Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Sửađề: góc A=góc D=90 độ
Xét tứ giá ABKD có
AB//KD
AD//BK
góc ADK=90 độ
=>ABKD là hình chữ nhật
DK=AB=4cm
=>KC=5cm
=>\(BK=\sqrt{13^2-5^2}=12\left(cm\right)\)
=>AD=12cm
b: Xet ΔIDC có AB//DC
nên IA/ID=AB/DC
=>IA/IA+12=4/9
=>9IA=4IA+48
=>5AI=48
=>AI=9,6cm
IM=9,6+6=15,6cm
c: Xet ΔIMH vuông tại H và ΔBCK vuông tại K co
góc I=góc CBK
=>ΔIMH đồng dạng với ΔBCK
=>MH/CK=IM/BC
=>MH/5=15,6/13=6/5
=>MH=6cm
a) -Qua B kẻ đường thẳng vuông góc với DC tại E.
-Xét tứ giác ABED: \(\widehat{ADE}=\widehat{BAD}=\widehat{DEB}=90^0\)
\(\Rightarrow\)ABED là hình chữ nhật nên \(AD=BE\); \(AB=ED=4\left(cm\right)\)
-Xét △BEC vuông tại E:
\(BE^2+EC^2=BC^2\) (định lí Py-ta-go)
\(\Rightarrow BE^2+\left(DC-DE\right)^2=BC^2\)
\(\Rightarrow BE^2+\left(9-4\right)^2=13^2\)
\(\Rightarrow BE^2=13^2-5^2=144\)
\(\Rightarrow BE=AD=12\left(cm\right)\)
b) \(S_{ABCD}=\dfrac{AD.\left(AB+CD\right)}{2}=\dfrac{12.\left(4+9\right)}{2}=78\left(cm^2\right)\)
c) -Đề sai.
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
Bài 2:
a: Xét ΔABE và ΔACF có
góc ABE=góc ACF
AB=AC
góc A chung
Do đó: ΔABE=ΔACF
Suy ra: AE=AF
b: Xét ΔABC có AF/AB=AE/AC
nên FE//BC
=>BFEC là hình thang
mà CF=BE
nên BFEC là hình thang cân
c: Xét ΔFEB có góc FEB=góc FBE
nên ΔFEB cân tại F
=>FE=FB=EC
a: Xét ΔBAD vuông tại A và ΔADC vuông tại D có
BA/AD=AD/DC
=>ΔBAD đồng dạng với ΔADC
b: ΔBAD đồng dạng với ΔADC
=>góc BDA=góc ACD
Xét ΔOAD và ΔDAC có
góc ODA=góc DCA
góc A chung
=>ΔOAD đồng dạng với ΔDAC
=>góc AOD=góc ADC=90 độ
=>AC vuông góc BD tại O
c: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>S OAB/S OCD=(AB/CD)^2=(4/9)^2=16/81