Cho hình thang ABCD (AB//CD ) có CD = AD + BC. Gọi K là điểm thuộc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ko pc lun nek ...........ukm ko pc

11 tháng 9 2018

A B C D K 1 2 3 1 2 1 2

Vif CD = AD + BC maf KD = AD => KC = BC

Tam giacs DAK cân tại D => góc A1 = góc K1

Mà K1 = A2 (so le trong) => Góc A1 = góc A2 => AK là tia phân giác góc A.

Chứng minh tương tự, BK là phân giác góc B

Ko bt vẽ hình ở đây ntn Thông cảm 🙏🙏 

Cách vẽ : Vẽ sao cho cân tại B và C và B ; C là  2 góc trong cùng phía , nối A với C

Giải:

a) Vì AB//DC ( gt)

=> BAC = ACD ( so le trong )

Mà AC là pg BCD 

=> BCA = ACD

Mà BAC = ACD (cmt)

=> BCA = BAC

=> tam giác BAC cân tại B

B)

Giải : 

Vì AH vuông góc với DC

=> BHD = 90 độ

Vì AF vuông góc với DC

=> AFC = 90 độ

=> AFC= BHD = 90 độ

=> AF// BH(1)

Vì AB// DC ( gt)

=> AB//FC (2)

Từ (1) và (2)=> AB = AF = FH = HB = 5cm ( Vì AF = 5cm) tính chất của hình thang

Vì tam giác ABC cân tại B ( cm ở ý a)

=> AB = BC = 5cm

Áp dụng định lý Py- ta - go ta có :

BC2= BG2+GC2

GC2=√25-- BG2

Tớ phân vân không biết đáp án của tớ có đúng không Nếu sai thông cảm nhé

a: ΔABD có AB=AD
nên ΔABD cân tại A

=>\(\hat{ABD}=\hat{ADB}\)

\(\hat{ABD}=\hat{BDC}\) (hai góc so le trong, AB//CD)

nên \(\hat{ADB}=\hat{CDB}\)

b: ABCD là hình thang cân

=>AD=BC

mà AB=AD

nên AB=BC

=>ΔBAC cân tại B

=>\(\hat{BAC}=\hat{BCA}\)

\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong, AB//CD)

nên \(\hat{BCA}=\hat{DCA}\)

=>CA là phân giác của góc BCD

19 tháng 9

6 tháng 10 2019

bạn dùng tính chất đương phân giác rồi suy ra tỉ leejj bằng nhau 

6 tháng 10 2019

A D B C K I 1 1 2 1

a) Vì ABCD là hình bình hành ( GT ) 

\(\Rightarrow AD//BC\left(Tc\right)\)

\(\Rightarrow\widehat{KAI}=\widehat{AIB}\)( 2 góc so le trong )

Mà \(\widehat{KAI}=\widehat{BAI}\)( vì AI là phân giác của góc BAD )

\(\Rightarrow\widehat{AIB}=\widehat{BAI}\)

Xét \(\Delta ABI\)có : \(\widehat{AIB}=\widehat{BAI}\)

\(\Rightarrow\Delta ABI\) cân tại B ( Dấu hiệu nhận biết ) 

b) Ta có : CK là phân giác của góc DCI ( GT )

\(\Rightarrow\widehat{C_1}=\widehat{C_2}=\frac{\widehat{DCI}}{2}\left(1\right)\)

AI là phân giác của góc BAK ( GT )

\(\Rightarrow\widehat{BAI}=\widehat{A_1}=\frac{\widehat{BAK}}{2}\left(2\right)\)

Mà \(\widehat{BAK}=\widehat{DCI}\) ( ABCD là hình bình hành ) (3)

Từ ( 1 ) ,(2 ) ,( 3)

\(\Rightarrow\widehat{BAI}=\widehat{C_2}\)

Mà \(\widehat{BAI}=\widehat{BIA}\)( chứng minh trên)

\(\Rightarrow\widehat{BIA}=\widehat{C_2}\)

c) Bạn tự làm nốt nha ! 

18 tháng 10 2021

đề  sai sao giải :V

18 tháng 10 2021

chả thảo vẽ cái hình xong nhìn chả ra cái gì :VVV