K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét tứ giác ABCD có

AB//CD

AD//BC

=>ABCD là hình bình hành

góc BCE=góc BEC

góc BCE=góc ADC

=>góc BED=góc ADE

=>ABED là hình thang cân

29 tháng 7 2021

Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )

Xét \(\Delta\)ABI và \(\Delta\)EDI có:

\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)

DI=IB (I là trung điểm của BD)

\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )

=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )

=> AB = DE ( 2 cạnh tương ứng ) (1)

Mà AB//DE ( AB//DC, E thuộc DC ) (2)

Từ (1) và (2) -> ABED là hình bình hành

-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD

-> I là trung điểm AE

Chúc bạn học tốt!!!

 

 

14 tháng 10 2021

Xét hình thang ABCD có 

E là trung điểm của AD

F là trung điểm của BC

Do đó: EF là đường trung bình của hình thang ABCD

Suy ra: EF//AB

Xét tứ giác AEFB có EF//BA

nên AEFB là hình thang

mà \(\widehat{A}=\widehat{B}\)

nên AEFB là hình thang cân

14 tháng 10 2021

Trong Hình thang cân ABCD có 

AE=BE và BF=CF

\(\Rightarrow\)EF là đường trung bình của hình thang ABCD

\(\Rightarrow\)EF//AB (1) và EF//CD \(\Rightarrow\)\(\widehat{AEF}=\widehat{EDC}\) và \(\widehat{BFE}=\widehat{FCD}\) (so le trong)

Mà \(\widehat{C}=\widehat{D}\) (Hình thang ABCD cân)

\(\Rightarrow\widehat{AEF}=\widehat{BFE}\) (2)

(1),(2) \(\Rightarrow\)Hình thang ABFE cân (đáy AB//FE)

 

29 tháng 6 2018

+)  Vì ABCD là hình thang

\(\Rightarrow AB//CD\)

\(\Rightarrow AB//DE\)

\(\Rightarrow\widehat{A}_1=\widehat{E}_1\)( so le trong)

và  \(\widehat{D_1=\widehat{B_1}}\)( slt )

Xét \(\Delta AIB\)và \(\Delta EIB\)có :

\(\widehat{A}_1=\widehat{E_1}\)( cmt)

\(BI:\)Cạnh chung

\(\widehat{B_1}=\widehat{D_1}\)(cmt )

Do đó : \(\Delta AIB=\Delta EIB\left(g.c.g\right)\)

\(\Rightarrow IA=IB\)( cặp cạnh tương ứng )               (*)

+)  Vì AB // CD ( GT )

=>  AB // EC 

=> ABCE là hình thang

Xét \(\Delta BEC\)và \(\Delta BEA\)có :

\(\widehat{E_2}=\widehat{B_{1,2}}\)( soletrong)

\(BE:\)cạnh chung

\(\widehat{E_3}=\widehat{B_3}\)(sl)

Do đó : \(\Delta BEC=\Delta BEA\left(g.c.g\right)\)

\(\Rightarrow BC=BA\)( 2 cạn tương ứng )   (1)

Mà \(BC=BE\)( GT )       (2)

từ (1) và (2)

\(\Rightarrow BA=BE\)

\(\Rightarrow\Delta ABE\)Cân

Xét \(\Delta\)cân \(ABE\)có :

\(IA=IE\)( chứng minh trên )   (1)

\(BI\perp AE\)( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao )             (2)

Từ (1) và (2)

=> Hai điểm A và E đối xứng với nhau qua I           ( đpcm)

29 tháng 6 2018

A B C D I 1 1 2 3 1 E 1 2 3

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

13 tháng 10 2016

a)Xét hình bình hành ABED có:

   AB=DE

   AB//DE(doAB//DC)

   =>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)

 b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )

    Xét tam giác ANI và tam giác EMI có:

    AI=IE(là trung điểm AI)

    góc BAE=gócAED(cmt)

    góc AIN=gócEIM(2 góc đối đỉnh)

    =>tam giác ANI=tam giác EIM(g.c.g)

    =>AN=ME(2 cạnh tương ứng)

    có AB=DE

        AN=ME

      =>AB-AN=DE-ME

      =>NB=DM

      mà DM=MC(do M là trung điểm DC)

      =>NB=MC

      Lại có NB//MC (do AB//DC)

     Xét tứ giác NBMC có :

     NB=MC(cmt)

     NB//MC(cmt)

     =>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)

     =>NM=BC

c)

13 tháng 10 2016
  1. a , Vì E ​\(\in\)CD =) DE // AB . 
    . Xét tứ giác ABED có DE// AB ; AB=DE =) ABED là hình bình hành
    . - 


    .