Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì AB//CD (gt) -> \(\widehat{ABD}=\widehat{BDE}\) ( 2 góc so le trong )
Xét \(\Delta\)ABI và \(\Delta\)EDI có:
\(\widehat{ABD}=\widehat{BDE}\left(cmt\right)\)
DI=IB (I là trung điểm của BD)
\(\widehat{AIB}=\widehat{DIE}\) ( 2 góc đối đỉnh )
=> \(\Delta\)ABI = \(\Delta\)EDI ( g.c.g )
=> AB = DE ( 2 cạnh tương ứng ) (1)
Mà AB//DE ( AB//DC, E thuộc DC ) (2)
Từ (1) và (2) -> ABED là hình bình hành
-> AE cắt DB tại trung điểm mỗi đường ( tính chất hình bình hành ) mà I là trung điểm của BD
-> I là trung điểm AE
Chúc bạn học tốt!!!
Xét hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB
Xét tứ giác AEFB có EF//BA
nên AEFB là hình thang
mà \(\widehat{A}=\widehat{B}\)
nên AEFB là hình thang cân
Trong Hình thang cân ABCD có
AE=BE và BF=CF
\(\Rightarrow\)EF là đường trung bình của hình thang ABCD
\(\Rightarrow\)EF//AB (1) và EF//CD \(\Rightarrow\)\(\widehat{AEF}=\widehat{EDC}\) và \(\widehat{BFE}=\widehat{FCD}\) (so le trong)
Mà \(\widehat{C}=\widehat{D}\) (Hình thang ABCD cân)
\(\Rightarrow\widehat{AEF}=\widehat{BFE}\) (2)
(1),(2) \(\Rightarrow\)Hình thang ABFE cân (đáy AB//FE)
+) Vì ABCD là hình thang
\(\Rightarrow AB//CD\)
\(\Rightarrow AB//DE\)
\(\Rightarrow\widehat{A}_1=\widehat{E}_1\)( so le trong)
và \(\widehat{D_1=\widehat{B_1}}\)( slt )
Xét \(\Delta AIB\)và \(\Delta EIB\)có :
\(\widehat{A}_1=\widehat{E_1}\)( cmt)
\(BI:\)Cạnh chung
\(\widehat{B_1}=\widehat{D_1}\)(cmt )
Do đó : \(\Delta AIB=\Delta EIB\left(g.c.g\right)\)
\(\Rightarrow IA=IB\)( cặp cạnh tương ứng ) (*)
+) Vì AB // CD ( GT )
=> AB // EC
=> ABCE là hình thang
Xét \(\Delta BEC\)và \(\Delta BEA\)có :
\(\widehat{E_2}=\widehat{B_{1,2}}\)( soletrong)
\(BE:\)cạnh chung
\(\widehat{E_3}=\widehat{B_3}\)(sl)
Do đó : \(\Delta BEC=\Delta BEA\left(g.c.g\right)\)
\(\Rightarrow BC=BA\)( 2 cạn tương ứng ) (1)
Mà \(BC=BE\)( GT ) (2)
từ (1) và (2)
\(\Rightarrow BA=BE\)
\(\Rightarrow\Delta ABE\)Cân
Xét \(\Delta\)cân \(ABE\)có :
\(IA=IE\)( chứng minh trên ) (1)
\(BI\perp AE\)( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao ) (2)
Từ (1) và (2)
=> Hai điểm A và E đối xứng với nhau qua I ( đpcm)
Bài 4:
Xét ΔAED vuông tại E và ΔBFC vuông tại F có
AD=BC
góc D=góc C
Do đó: ΔAED=ΔBFC
=>DE=CF
Bài 3:
a: Xét ΔADC và ΔBCD có
AD=BC
AC=BD
DC chung
Do đó: ΔADC=ΔBCD
=>góc ACD=góc BDC
b: Ta co: góc ACD=góc BDC
=>góc EAB=góc EBA
=>ΔEAB cân tại E
a)Xét hình bình hành ABED có:
AB=DE
AB//DE(doAB//DC)
=>tứ giác ABED là hình bình hàXetnh vì có 2 cạnh đối // và = nhau(dấu hiệu nhận biết thứ 3)
b)Có AB//DE=>gócBAE=góc AED(2 góc so le trong )
Xét tam giác ANI và tam giác EMI có:
AI=IE(là trung điểm AI)
góc BAE=gócAED(cmt)
góc AIN=gócEIM(2 góc đối đỉnh)
=>tam giác ANI=tam giác EIM(g.c.g)
=>AN=ME(2 cạnh tương ứng)
có AB=DE
AN=ME
=>AB-AN=DE-ME
=>NB=DM
mà DM=MC(do M là trung điểm DC)
=>NB=MC
Lại có NB//MC (do AB//DC)
Xét tứ giác NBMC có :
NB=MC(cmt)
NB//MC(cmt)
=>tứ giác NBMC là hình bình hành vì có 2 cạnh đối //và= nhau(dhnb thứ 3)
=>NM=BC
c)
Xét tứ giác ABCD có
AB//CD
AD//BC
=>ABCD là hình bình hành
góc BCE=góc BEC
góc BCE=góc ADC
=>góc BED=góc ADE
=>ABED là hình thang cân