Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
(Hình thì bạn tự vẽ nha)
a) Xét tam giác BAD có: MB=MA ; QB=QD
=> MQ là đường trung bình của tam giác BAD
=> MQ // AD ; MQ = 1/2 AD (1)
Xét tam giác CAD có: NC = NA ; PC = PD
=> NP là đường trung bình của tam giác CAD
=> NP // AD ; NP = 1/2 AD (2)
Từ (1), (2) => MQ // NP ; MQ = NP
Tứ giác MNPQ có: MQ // NP ; MQ = NP
=> MNPQ là hình bình hành
b) Theo a), ta có: MQ = 1/2 AD (*)
Xét tam giác ABC có: MA = MB ; NA = NC
=>MN là đường trung bình của tam giác ABC
=> MN = 1/2 BC (**)
Từ (*), (**) và AD=BC (ABCD là thang cân)
=> MQ = MN
Hình bình hành MNPQ có MQ = MN
=> MNPQ là hình thoi
Bài 1: △ABD=△BAC(c−g−c)△ABD=△BAC(c−g−c)
=>AC=BD=>AC=BD
△ACD=△BDC(c−c−c)△ACD=△BDC(c−c−c)
=>ADCˆ=BCDˆ=>ADC^=BCD^
Mà ADCˆ+DABˆ+ABCˆ+BCDˆ=360oADC^+DAB^+ABC^+BCD^=360o
=>2(DABˆ+ADCˆ)=360o=>2(DAB^+ADC^)=360o
=>DABˆ+ADCˆ=180o=>DAB^+ADC^=180o
=>AB//CD=>AB//CD
=>ABCD=>ABCD là hình thang mà có 2 góc ở đáy bằng nhau nên lf thang cân
Bài 4: chắc mấy bạn ở dưới vẽ sai hình :3 -_-
hình vẽ chính xác là ta vẽ được một hình thang cân với AD//BCAD//BC sẽ có được đầy đủ điều kiện đề bài đưa ra
Giải:
△ADB=△DAC△ADB=△DAC (c-c-c)
=>DABˆ=ADCˆ=>DAB^=ADC^
Từ đây chứng minh như câu 1 là =>đpcm )
A B C D C D