K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2022

I là trung điểm của DC (gt).

\(\Rightarrow DC=2DI=2IC.\)

Mà \(DC=2AB\left(gt\right).\)

\(\Rightarrow AB=DI=IC.\)

Xét tứ giác ABDI:

\(AB//DI\left(AB//DC\right).\\ AB=DI\left(cmt\right).\)

\(\Rightarrow\) Tứ giác ABDI là hình bình hành (dhnb).

\(\Rightarrow\widehat{ABI}=\widehat{ADI}\) (Tính chất hình bình hành).

Xét tứ giác ABCI:

\(AB//IC\left(AB//DC\right).\\ AB=IC\left(cmt\right).\)

\(\Rightarrow\) Tứ giác ABCI là hình bình hành (dhnb).

\(\Rightarrow\widehat{BAI}=\widehat{BCI}\) (Tính chất hình bình hành).

Xét \(\Delta ABI\) và \(\Delta IDA:\)

\(\widehat{ABI}=\widehat{IDA}\left(cmt\right).\\ \widehat{IAB}=\widehat{AID}\left(AB//DC\right).\\ \Rightarrow\Delta ABI\sim\Delta IDA\left(g-g\right).\left(1\right)\)

Xét \(\Delta ABI\) và \(\Delta CIB:\)

\(\widehat{BAI}=\widehat{ICB}\left(cmt\right).\\ \widehat{ABI}=\widehat{CIB}\left(AB//DC\right).\\ \Rightarrow\Delta ABI\sim\Delta CIB\left(g-g\right).\left(2\right)\)

Từ \(\left(1\right);\left(2\right).\Rightarrow\) \(\Delta IDA\) \(\sim\Delta CIB.\)

Vậy các cặp tam giác đồng dạng có trong hình là:

\(\Delta ABI\sim\Delta IDA;\) \(\Delta ABI\sim\Delta CIB;\) \(\Delta IDA\) \(\sim\Delta CIB.\)

23 tháng 8 2017

Học sinh sử dụng tính chất các tam giác bằng nhau thì đồng dạng với nhau để chứng minh

1 tháng 2 2018

Xét tứ giác ABED có:

AB//DE;AB=DE

=>ABED là hình bình hành ( một cặp cạnh vừa song song vừa bằng nhau)

nên AD=BE

Xét tam giác EDA và tam giác ABE có:

AB=DE (gt)

AE là cạnh chung

AD=BE ( vừa chứng minh)

=>tam giác EDA =tam giác ABE

<=>tam giác EDA đồng dạng với tam giác ABE (1)

Xét tứ giác ABCE có:

AB//EC;AB=EC

=>ABCE là hình bình hành (một cặp cạnh vừa song song vừa bằng nhau

=>AE=BC

Xét tam giác ABE và tam giác CEB có:

AB=EC(gt)

BE là cạnh chung

AE=BC (vừa chứng minh)

=>tam giác ABE=tam giác CEB

<=>tam giác ABE đồng dạng với tam giác CEB (2)

từ (1) và (2)

=>tam giác EDA đồng dạng với tam giác ABE và đồng dang với tam giác CEB.

Ai biết cách vẽ kí hiệu đồng dạng không chỉ mình cách vẽ với cảm mơn bạn nhiều.

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thangBài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của...
Đọc tiếp

Bài 1: Cho tam giác ABC .Trên tia AC lấy điểm M sao cho AM = AB. Trên tia AB lấy điểm N sao cho AN = AC. Chứng minh tứ giác BMCN là hình thang

Bài 2: Cho tam giác ABC vuông tại A. Lấy điểm M thuộc cạnh BC sao cho AM= 1/2 BC, N là trung điểm cạnh AB. Chứng minh:

a) Tam giác ABC cân ---- b) Tứ giác MNAC là hình thang vuông 

Bài 3: Cho hình thang cân ABCD ( AB // CD ) ---- a) Chứng minh góc ACD = góc BCD ---- b) Gọi E là giao điểm của AC và BD. C/minh EA = EB

Bài 4: Cho ABCD là hình thang ( AB // CD, AB < CD ). Kẻ các đường cao AE,BF của hình thang. C/minh rằng DE = CF 

Bài 5: Cho ABCD là hình thang ( AB // CD ) có DB là đường phân giác góc D và AE là đường phân giác góc A ( E thuộc DC ). Biết AE // BC và O là giao điểm của AE với DB. CMR:

a) AE vuông góc với DB

b) AD // BE và AD = BE

c) E là trung điểm của DC 

d) Xác định dạng của tứ giác BCEO

e) Biết góc BEC = 80 độ. Hãy tính các góc của hình thang ABCD 

1

Bài 4:

Xét ΔAED vuông tại E và ΔBFC vuông tại F có

AD=BC

góc D=góc C

Do đó: ΔAED=ΔBFC

=>DE=CF
Bài 3:

a: Xét ΔADC và ΔBCD có

AD=BC

AC=BD

DC chung

Do đó: ΔADC=ΔBCD

=>góc ACD=góc BDC

b: Ta co: góc ACD=góc BDC

=>góc EAB=góc EBA
=>ΔEAB cân tại E

a: Xét tứ giác ABPD có 

AB//PD

AB=PD

Do đó: ABPD là hình bình hành

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình

=>MN//AC và MN=AC/2(1)

Xét ΔADC có 

Q là trung điểm của AD
P là trung điểm của CD

Do đó: QP là đường trung bình

=>QP//AC và QP=AC/2(2)

Từ (1) và (2) suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

b: Để MNPQ là hình thoi thì MN=MQ

hay AC=BD

21 tháng 3 2019

Vì CD = 2AB (gt) nên AB = 1/2 CD

Vì E là trung điểm của CD nên DE = EC = 1/2 CD

Suy ra: AB = DE = EC

Hình thang ABCD có đáy AB = EC nên hai cạnh bên AE và BC song song với nhau

Xét △ AEB và  △ CBE, ta có:

∠ (ABE) =  ∠ ( BEC)(So le trong)

∠ (AEB) = (EBC) (so le trong)

BE cạnh chung

⇒ △ AEB = △ CBE (g.c.g) (1)

Hình thang ABCE có đáy AB = DE nên hai cạnh bên AD và BE song song với nhau

Xét  △ AEB và  △ EAD, ta có:

∠ (BAE) =  ∠ (AED)(so le trong)

∠  (AEB) =  ∠ (EAD) (so le trong)

AE cạnh chung

⇒ △  AEB = △ EAD(g.c.g) (2)

Từ (1) và (2) suy ra: ΔAEB = ΔCBE = ΔEAD

Vậy ba tam giác  △ AEB;  △ CBE và  △ EAD đôi một đồng dạng