Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
Xét \(\Delta OEB\)và \(\Delta OMC\)có :
\(OB=OC\left(gt\right)\)
\(\widehat{EBO}=\widehat{MCO}\)
\(EB=MC\left(gt\right)\)
\(\Rightarrow\Delta OEB=\Delta OMC\left(c.g.c\right)\)
\(\Rightarrow OE=OM\)( hai cạnh tương ứng ) \(\left(1\right)\)
Cũng có : \(\widehat{EOB}=\widehat{MOC}\)( hai góc tương ứng )
\(\Rightarrow\widehat{EOB}+\widehat{BOM}=\widehat{BOM}+\widehat{MOC}\)
\(\Rightarrow\widehat{EOM}=\widehat{BOC}=90^o\left(2\right)\)
Từ ( 1 ) và ( 2 ) \(\Rightarrow\Delta OEM\)vuông cân ( đpcm )
\(b,\)Ta có : \(AB//CN\Rightarrow\Delta ABM~\Delta NCM\)
\(\Rightarrow\frac{CM}{BM}=\frac{MN}{AM}\Rightarrow\frac{CM}{BM+MN}=\frac{MN}{AM+MN}\)
\(\Rightarrow\frac{CM}{BC}=\frac{MN}{AN}\Rightarrow\frac{BE}{AB}=\frac{MN}{AN}\)
\(\Rightarrow ME//BN\)
Cho chị nợ câu c :) lâu không học toán 8 quên sạch ròi :((
Gọi K là giao điểm của OM và BN
Do \(ME//BN\)(CMb)
=> Góc BKM= góc EMO=45 độ
Xét tam giác OBM và tam giác OKB có
\(BKM=OBM=45^0\)
Góc O chung
=> tam giác OBM đồng dạng tam giác OKB
=> \(OB^2=OM.OK\)
MÀ \(OB=OC\)
=> \(OC^2=OM.OK\)
=> tam giác OMC đồng dạng tam giác OCK
=> \(MKC=OCM=45^o\)
=> BKC=90 độ
=> \(K\equiv H\)
=> O,M,H thẳng hàng
Vậy O,M,H thẳng hàng
Xét \(2\Delta:\Delta APC\) và \(\Delta BQA\) có:
\(\left\{{}\begin{matrix}\widehat{APC}=\widehat{BQA}=90^o\\\widehat{BAQ}=\widehat{ACP}\left(slt\right)\end{matrix}\right.\)
\(\Rightarrow\Delta APC\sim\Delta BQA\left(g-g\right)\)