Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ABssCD\Rightarrow\dfrac{AB}{CD}=\dfrac{OB}{OD}=\dfrac{OA}{OC}=\dfrac{2}{3}\)
a)\(S_{AOD}=\dfrac{1}{2}OA.OD.sinAOB\)
\(S_{BOC}=\dfrac{1}{2}OB.OC.sinBOC\)
\(\Rightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{OA.OD}{OB.OC}\) vì \(\widehat{AOD}=\widehat{BOC}\Rightarrow sinAOD=sinBOC\)
\(\Leftrightarrow\dfrac{S_{AOD}}{S_{BOC}}=\dfrac{2}{3}.\dfrac{3}{2}=1\)
b) vì \(ABssCD\Rightarrow\dfrac{OH}{OK}=\dfrac{2}{3}\Rightarrow\dfrac{OH}{HK}=\dfrac{2}{5}\)
\(S_{AOB}=\dfrac{1}{2}.OH.AB\\ S_{ABCD}=\dfrac{1}{2}\left(AB+CD\right).HK=\dfrac{1}{2}\left(AB+\dfrac{3}{2}AB\right).HK=\dfrac{1}{2}.\dfrac{5}{2}AB.HK\)
\(\Rightarrow\dfrac{S_{AOB}}{S_{ABCD}}=\dfrac{\dfrac{1}{2}OH.AB}{\dfrac{1}{2}HK.\dfrac{5}{2}AB}=\dfrac{2}{5}.\dfrac{1}{\dfrac{5}{2}}=\dfrac{4}{25}\)
\(\Rightarrow S_{ABCD}=\dfrac{4}{\dfrac{4}{25}}=25\)
<br class="Apple-interchange-newline"><div id="inner-editor"></div>S1,S2,S3,S4lần lượt là diện tích các tam giác AGD,AGB,BGC,CGD
ta có : S1S2 =DGBG =S4S3 ⇒S1.S3=S2.S4(1)
ta thấy tam giác ABD và tam giác ABC có diện tích bằng nhau vì có chung đáy và đường cao không thay đổi.
Mà SABD=S1+S2;SABC=S3+S2⇒S1=S3(2)
Từ (1)và (2)⇒S2.S4=S21⇒S2=S124
⇒SABCD=S1+S2+S3+S4=2S1+S12S4 =2.18+18225 +25=184925 =73,96(cm2)
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC= 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG, chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG=1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x2 = 69 cm2
diện tích ABCD : (34,5+69)+(34,5+69)x2 = 310,5 cm2
duyệt đi
xét tam giác ABC và BCD có chiều cao bằng nhau , đáy AB=1/2CD => SABC = 1/2 SBCD
mặt khác 2 tam giác này có chung đáy BD => chiều cao đỉnh C
xét tam giác ABG và BCG có chung đáy BG => chiều cao đỉnh A = 1/2 chiều cao đỉnh C => SABG= 1/2 SBCG
vậy diện tích tam giác CBG là: 34,5 x 2= 69 cm2
diện tích hình thang ABCD : (34,5+69)+(34,5+69) x2 = 310,5 cm2
duyệt đi
Hình thang ABCD cho ta SAID =SBIC gọi diện tích 2 hình tam giác này là n.
Xét 2 hình tam giác AIB và AID chung đường cao kẻ từ A nên 2 cạnh đáy IB và ID tỉ lệ với 2 diện tích: IB/ID = 24,5/n
Tương tự với 2 hình tam giác CIB và CID ta có IB/ID = n/98
=> 24,5/n = n/9
n x n = 98 x 24,5 = 2401
Vậy n = 49
=> SABCD = 24,5 + 98 + 49 + 49 = 220,5 cm2
Ta kí hiệu S (MNP) là diện tích tam giác MNP
a) Diện tích hình thang ABCD = 1/2 (AB+CD)= 1/2 (50 + 20) . 14 = 245 (cm2)b,S(AED)=S(ACD) - S(ECD) S(BEC) = S(BCD) − S(ECD) mà S(ACD) = S(BCD) nên S(AED) = S(BEC).c, BE/DE = S(AEB) / S(AED) = S(CEB) / S(CED) = S(AEB) + S(CEB) / S(AED) + S(CED) = S(ABC) / S(ACD) = AB / CD = 3/4=> S(CEB) / S(CED) = 3/4 =>S(CEB) + S(CED) / S(CED) = 7/4 => S(DBC) / S(CED) = 7/4 => S(CED) = 4/7 . S(DBC)Ta có S(DBC) = 140 cm² nên S(CED) = 80 cm².