Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn phải đợi thôi, khổ thân bạn thật.
Bạn đợi hết tết khi ấy mấy bạn giỏi sẽ giúp bạn thôi nha.
Lời giải:
Áp dụng định lý Talet cho các cặp cạnh song song ta có:
$\frac{CD}{AB}=\frac{OC}{OA}=\frac{OE+EC}{OA}=\frac{OE}{OA}+\frac{EC}{OA}=\frac{OB}{OD}+1=\frac{AB}{CD}+1$
Đặt $\frac{AB}{CD}=x(x>0)$ thì:
$\frac{1}{x}=x+1\Leftrightarrow x^2+x-1=0$
Do $x>0$ nên $x=\frac{-1+\sqrt{5}}{2}$
Vậy.........
c. -Xét △ADC có: OM//DC (gt).
\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)
\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).
-Xét △BDC có: ON//DC (gt).
\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).
\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)
\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)
-Xét △ABO có: AB//DC (gt).
\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)
-Từ (1), (2),(3) suy ra:
\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)
\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)
\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)
a: Xét ΔAOB và ΔCOD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔAOB∼ΔCOD
Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
hay \(OA\cdot OD=OB\cdot OC\)
b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)
\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)
a, Xét Δ IDC có
AB // CD => ΔIAB \(\sim\) ΔIDC
=> \(\dfrac{IA}{ID}\) = \(\dfrac{IB}{IC}\) = \(\dfrac{AB}{DC}\)
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\) ; \(\widehat{ODC}=\widehat{OBA}\) ; \(\widehat{AOB}=\widehat{COD}\)
=> ΔOAB \(\sim\) ΔOCD
=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)
=> \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{IA}{ID}=\dfrac{IB}{IC}=\dfrac{IA+IB}{ID+IC}=\dfrac{OA+OB}{OC+OD}\)
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)
\(\widehat{AOB}=\widehat{COD}\)
Do đó: ΔOAB\(\sim\)ΔOCD
Suy ra: AB/CD=OA/OC
=>4/CD=1/3
hay CD=12(cm)