Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Mình không biết vẽ hình trên đây bạn tự vẽ hình nhé
a, Vì MN//AB=>MN//AB//CD(vì AB//CD)
PQ//DC=>PQ//DC//AB(vì AB//CD)
=>MN//PQ
Xét hình thang ABQP có: AM=PM(M là trung điểm của AB)
MN//PQ//AB
=>BN=NQ hay N là trung điểm của BQ(1)
Xét hình thang MNCD có: MP=DP(P là trung điểm của MD)
MN//PQ//CD
=>NQ=QC hay Q là trung điểm của NC(2)
Từ (1) và (2)=>BN=NQ=QC
b,Xét hình thang ABQP có: AM=PM(M là trung điểm của AP)
BN=QN(N là trung điểm của BQ)
=>MN là đường trung bình của hình thang ABQP
=>MN=\(\frac{AB+PQ}{2}\)
=>AB+PQ=2MN
c, Xét hình thang MNCD có: MP=DP(P là trung điểm của MD)
NQ=CQ(Q là trung điểm của NC)
=>PQ là đường trung bình của hình thang MNCD
=>PQ=\(\frac{MN+CD}{2}\)
=>MN+CD=2PQ
d, Vì AB+PQ=2MN =>AB=2MN-PQ(3)
MN+DC=2PQ =>DC=-MN+2PQ(4)
Cộng từng vế tương ứng của (3) và (4) ta được:
AB+CD=2MN-PQ+(-MN)+2PQ
AB+CD=MN+PQ

Từ D kẻ DA' vuông góc với AB
ABCD là hình thang cân nên AD = BC ; AB//DC
=> Khoảng cách từ điểm B đến DC bằng với khoảng cách từ điểm D đến AB
=> BE = DA'
Xét tam giác DA'A và tam giác BEC có :
BE = DA' (cmt ) ; DA'A = BEC ( = 90 độ ) ; AD = BC ( cmt )
=> Tam giác DA'A = Tam giác BEC ( ch-cgv )
=> S DA'A = S BEC
Mà S BEC + S ABED = S ABCD
S DA'A + S ABED = S A'BED
=> S ABCD = S A'BED
Dễ thấy A'BED là hình chữ nhật ( tự CM nhaa )
\(\Rightarrow S.A'BED=DE.BE\)
và \(S.ABCD=\frac{AB+DC}{2}.BE\)
\(\Rightarrow DE=\frac{AB+DC}{2}\) ( ĐPCM )

a: Xét ΔKND có AM//ND
nên KM/KN=AM/ND
Xét ΔKNC có MB//NC
nên MB/NC=KM/KN
=>AM/ND=KM/KN
b: Xét ΔMBO và ΔNDO có
góc MBO=góc NDO
góc MOB=góc NOD
Do đó: ΔMBO đồng dạng với ΔNDO
=>MB/ND=MO/NO
Xét ΔMAO và ΔNCO có
góc MAO=góc NCO
góc MOA=góc NOC
Do đó: ΔMAO đồng dạng với ΔNCO
=>MA/NC=MO/NO=MB/ND

Xét ΔIAB và ΔICD có
góc IAB=góc ICD
goc AIB=góc CID
=>ΔIAB đồng dạng với ΔICD
=>IB/ID=AB/CD=BM/MC
=>IM//DC
=>IM vuông góc AD