Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔDAB có
E là trung điểm của AD
K là trung điểm của DB
Do đó:EK là đường trung bình của ΔDAB
Suy ra: EK//AB và \(EK=\dfrac{AB}{2}\left(1\right)\)
hay EK//CD
Xét ΔCAB có
I là trung điểm của AC
F là trung điểm của BC
Do đó: IF là đường trung bình của ΔCAB
Suy ra: IF//AB và \(IF=\dfrac{AB}{2}\left(2\right)\)
Từ (1) và (2) suy ra EK=IF
b: Hình thang ABCD có
E là trung điểm của AD
F là trung điểm của BC
Do đó: EF là đường trung bình của hình thang ABCD
Suy ra: EF//AB//CD
Ta có: EF//AB
mà FI//AB
và EF,FI có điểm chung là F
nên E,F,I thẳng hàng(3)
Ta có: EF//AB
mà EK//AB
và EF,EK có điểm chung là E
nên E,F,K thẳng hàng(4)
Từ (3) và (4) suy ra E,K,I,F thẳng hàng
a) ED là đường TB ⇒ED//BC⇒EDBC⇒ED//BC⇒EDBC là hbh
b) Ta có EM là đường TB của ΔABNΔABN
⇒EM//AN⇒EM//KN⇒EM//AN⇒EM//KN
Vì N là trung điểm MC ⇒K⇒K là trung điểm EC
c) C/m tương tự được I là trung điểm BD
Ta có OI=OB2OI=OB2 (O là giao điểm trung tuyến , quên đưa vào hình )
DI=3OB4DI=3OB4
OI=OB4OI=OB4
Chưng minh tương tự được OK=OC4OK=OC4
Vì OIOB=OKOC=14OIOB=OKOC=14
⇒IK//BC⇒IKBC=14⇒IK//BC⇒IKBC=14