Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có MN là đường trung bình của tam giác ABD, do đó MN song song với AB và có độ dài bằng một nửa độ dài AB.
Tương tự, MN song song với CD và có độ dài bằng một nửa độ dài CD.
Vì AB//CD, nên MN song song với AB và CD.
Do đó, ta có MNCH là hình bình hành.
*Ib có phần b nhé =))
gọi E,F lầ lượt là t/đ của AD và BC,mà tg ABCD là hthang cân nên ÈF là đg trung bình của hthang ABCD=>EF//DC. nối E vs H
xét tg AHD vuông tại H ( do AH^ DC) có:E là trung điểm của AD => HE là đg trung tuyến =>HE=ED=1/2.AD
ta có:ED=1/2 AD(E là t/đ của AD),FC=1/2BC(vì F là t/đ của BC).Mà AD=BC(tg ABCD là htang cân)=>ED=FC
xét tg EFCH có EF// CH(ví EF//DC,H thuộc DC)và EH=FC(=ED)=> tg EFCH là hbh=> EF=HC=5cm
A B C D E F H
Kẻ đg cao BK
DC=DH+HC=36(cm)
Dễ thấy tg AHD bằng tg BKC(ch-gn)
Suy ra DH=KC=6(cm)
Suy ra HK=DC-DH-KC=24(cm)
Dễ thấy AHKB là hcn nên HK=AB=24(cm)
Mà IJ là đtb hình thang cân ABCD nên \(IJ=\dfrac{AB+CD}{2}=\dfrac{24+36}{2}=30\left(cm\right)\)
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
A B C D H
N ở đâu vại ??!?