Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt AH=x
=>BC=4x
Theo đề, ta có: 1/2*4x*x=72
=>2x^2=72
=>x=6
b: Xét ΔCAB có MN//AB
nên ΔCMN đồng dạng với ΔCBA
=>S CMN/ SCBA=(CM/CB)^2=1/4
=>SCMN=18cm2
chứng minh rằng (1/2+1/4+1/6+...+1/2n)/(1+1/3+1/5+...1/(2n-1))
chứng minh rằng (1/2+1/4+1/6+...+1/2n)/(1+1/3+1/5+...+1/(2n-1))<n/(n+1)
Diện tích tam giác \(ABC\)là:
\(60\times40\div2=1200\left(cm^2\right)\)
Có: \(S_{ABC}=S_{ANM}+S_{BND}+S_{CDM}+S_{DMN}\)
\(\Leftrightarrow S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)
Để tích diện tích tam giác \(DMN\)ta sẽ tính diện tích các tam giác \(ANM,BND,CDM\).
\(S_{AMB}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(B\), \(AM=\frac{1}{3}\times AC\))
\(S_{ANM}=\frac{1}{2}\times S_{AMB}\)(chung đường cao hạ từ \(M\), \(AN=\frac{1}{2}\times AB\))
suy ra \(S_{ANM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\).
Một cách tương tự, ta cũng suy ra được \(S_{BND}=\frac{1}{2}\times\frac{1}{2}\times S_{ABC}=\frac{1}{4}\times S_{ABC}\)
\(S_{CDM}=\frac{1}{2}\times\frac{1}{3}\times S_{ABC}=\frac{1}{6}\times S_{ABC}\)
\(S_{DMN}=S_{ABC}-S_{ANM}-S_{BND}-S_{CDM}\)
\(=S_{ABC}-\frac{1}{6}\times S_{ABC}-\frac{1}{4}\times S_{ABC}-\frac{1}{6}\times S_{ABC}\)
\(=\frac{5}{12}\times S_{ABC}\)
\(=\frac{5}{12}\times1200=500\left(cm^2\right)\)
cho mình hỏi đây là vòng bao nhiêu vậy?
a) sau khi vẽ hình thì ta biết diện tích ade là :
( 120 x 2/3 ) x 1/2 = 40 ( cm2 )
chiều cao ah là :
120 x 2 : 50 = 4,8 ( cm )
ĐS:...