Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBKA vuông tại K và ΔBFC vuông tại F có
\(\widehat{FBC}\) chung
Do đó: ΔBKA\(\sim\)ΔBFC
Suy ra: BK/BF=BA/BC
hay \(BK\cdot BC=BF\cdot BA\)
b: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
\(\widehat{KBF}\) chung
Do đó: ΔBKF\(\sim\)ΔBAC
Bài 1:
a) Xét tam giác ABE và tam giác ACF có:
Góc AEB=góc AFC(=90 độ)
Góc A chung
=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)
b)
Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)
=>\(\frac{AB}{AC}=\frac{AE}{AF}\)
Xét tam giác AFE và tam giác ACB có:
Góc A chung(gt)
\(\frac{AB}{AC}=\frac{AE}{AF}\)
=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)
c)
H ở đou ra vại? :))
a, Xét tgABE và tgACF có:
góc AEB = góc CFA = 90o
góc BAC chung
Từ 2 điều trên => tgABE đồng dạng tgACF (g.g)
=> AB/AC = AE/AF (các cặp cạnh tương ứng)
=> AB.AF = AC.AE
a: Xét ΔABC có
BE,CF là các đường cao
BE cắt CF tại H
=>H là trực tâm
=>AH vuông góc BC tại K
Xét ΔBKA vuông tại K và ΔBFC vuông tại F co
góc KBA chung
=>ΔBKA đồng dạng với ΔBFC
b: ΔBKA đồng dạng với ΔBFC
=>BK/BF=BA/BC
=>BK*BC=BF*BA và BK/BA=BF/BC
c: Xét ΔBKF và ΔBAC có
BK/BA=BF/BC
góc KBF chung
=>ΔBKF đồng dạng vơi ΔBAC
a: Xét ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
Xét ΔFBH vuông tại F và ΔFCA vuông tại F có
góc FBH=góc FCA
=>ΔFBH đồng dạng vơi ΔFCA
=>FH/FA=BH/AC
=>FH*AC=BH*FA
b: Xét tứ giác BHCK có
I là trung điểm chung của BC và HK
=>BHCK là hình bình hành
=>CK//BH
=>CK vuông góc AC
=>AK là đường kính của (O)
Xet ΔAKC vuông tại C và ΔAHF vuông tại F có
góc AKC=góc AHF(=góc ABD)
=>ΔAKC đồng dạng với ΔAHF