Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tâm của hai đường tròn trong (N) là C và D. Ta có GS là tiếp tuyến chung của hai đường tròn tại K và J. Khi đó: D J ⊥ G S C K ⊥ G S
Kẻ D N / / G S ( N ∈ I S ) , khi đó DHKJ là hình chữ nhật nên HK=DJ=1 cm, do đó ta có CH=2 cm.
Ta có ∆ D H C đồng dạng ∆ G J D nên D J C H = G D C D
⇒ D G = D J . C D C H = 1 . 4 2 = 2 cm từ đó suy ra GF = 9 cm.
Ta có ∆ D H C đồng dạng ∆ G F S ⇒ G S D C = G F D H
⇒ G S = D C . G F D H = D C . G F D C 2 - C H 2 = 6 3 cm
⇒ F S = G S 2 - G F 2 = 3 3 cm.
Vì ∆ G E L đồng dạng ∆ G F S nên E L F S = G E G F
⇒ E L = G E . F S G F = 1 . 3 3 9 = 3 3
Vì (N) là khói nón cụt nên:
V N = 1 3 E L 2 + F S 2 + E L . F S E F = 728 π 9
Chọn đáp án D.
HD: Giả sử thiết diện là hình thang ABPQ
Gọi I, K lần lượt là tâm của đường tròn nhỏ và to.
Gọi M, N là hình chiếu của I, K lên một cạnh bên, điểm
Đáp án A
Không mất tính tổng quát, giả sử các đoạn thẳng có độ dài như hình vẽ:
Đáp án C
Theo bài ra ta có chiều cao của hình trụ bằng đường kính đáy của hình trụ và bằng đường kính của mặt cầu.
Gọi bán kính của mặt cầu là R
Đáp án A
Theo bài ra ta có chiều cao của hình trụ bằng đường kính đáy của hình trụ và bằng đường kính của mặt cầu.
Đáp án C
Gọi S, A, B, C lần lượt là tâm của các mặt cầu thứ tư và ba mặt cầu tiếp xúc đáy (như hình vẽ)
Khi đó S.ABC là khối tứ diện đều cạnh 2r.
Goi I là tâm của tam giác A B C ⇒ S i ⊥ A B C .
Tam giác ABC đều cạnh 2 r ⇒ A I = 2 r 3 .
Tam giác SAI vuông tại I, có S I = S A 2 − I A 2 = 4 r 2 − 2 r 3 2 = 2 6 3 r .
Ta thấy rằng Δ S M H ~ A S I g . g suy ra
S M S A = S H A I ⇒ S M = S A . A H A N = 2 r . r 2 r 3 = r 3 .
Vậy chiều cao của khối nón là h = S M + S I + I D = r 3 + 2 6 3 r + r = r 1 + 3 + 2 6 3 .