Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Bán kính đáy của hình trụ là R = 20 cm
Diện tích toàn phần của hình lập phương là S 1 = 6 . 40 2 = 9600 c m 2
Diện tích toàn phần của hình trụ là S 2 = 2 πRh + 2 πR 2 = 2 π 20 . 40 + 2 π 40 2 = 4800 cm 2
Vậy tổng S = S 1 + S 2 = 9600 + 4800 π = 2400 4 + 2 π cm 2
Đáp án B
Gọi M là đỉnh của hình lập phương có cạnh bằng 1 nằm trên đường chéo AC’ và nằm trên khối còn lại sau khi cắt. Gọi I là tâm của khối cầu có thể tích lớn nhất thỏa mãn yêu cầu bài toán.
Ta có d I ; A ' B ' C ' D ' = d I ; B C C ' B ' = d I ; D C C ' D '
Suy ra I thuộc đoạn thẳng C’M và mặt cầu tâm I cần tìm đi qua điểm M.
Đặt d I ; D C C ' D ' = a , ta có IC' = a 3 mà A C ' = 3 3 , A M = 3
Suy ra I M = 2 3 - a 3 mặt khác d I ; D C C ' D ' = I M ⇔ a = 2 3 - a 3 ⇒ a = 3 - 3 3
Đáp án D
Diện tích một mặt của hình lập phương
Vậy cạnh của hình lập phương là 16 = 4 cm
Thể tích của hình lập phương là 4 3 = 64 c m 3
Chọn A.
Phương pháp
Ta sử dụng công thức diện tích hình chiếu
S
'
=
S
.
cos
α
Với S là diện tích hình H , S’ và là diện tích hình chiếu của H trên mặt phẳng (P), α là góc tạo bởi mặt phẳng chứa hình H và mặt phẳng (P).
Cách giải:
Lại có hình chiếu của EFGH xuống mặt phẳng (ABCD) là hình vuông ABCD cạnh 3
Theo công thức tính diện tích hình chiếu ta có
Gọi O là tâm của hình lập phương và AB là một cạnh đáy của hình lập phương. Khi đó bán kính mặt cầu là
Vậy diện tích mặt cầu là
Chọn C.
Đáp án C.
Mỗi mặt sẽ có 4 phần thuộc hình chỉ được tô một lần tức là mỗi mặt sẽ sinh ra 4 hình lập phương thỏa mãn yêu cầu bài toán, ta có 6 mặt, từ đó ta có 24 hình thỏa mãn yêu cầu.
Đáp án C.
Mỗi mặt sẽ có 4 phần thuộc hình chỉ được tô một lần tức là mỗi mặt sẽ sinh ra 4 hình lập phương thỏa mãn yêu cầu bài toán, ta có 6 mặt, từ đó ta có 24 hình thỏa mãn yêu cầu