K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 11 2019

Lời giải:
Từ $a+b+c=2; \frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}=2,5$

$\Rightarrow (a+b+c)\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)=5$

\(\Leftrightarrow \frac{a}{a+b}+\frac{a}{a+c}+\frac{a}{b+c}+\frac{b}{a+b}+\frac{b}{a+c}+\frac{b}{b+c}+\frac{c}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}=5\)

\(\Leftrightarrow \frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}+\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=5\)

\(\Leftrightarrow \frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}=2\)

Khi đó:

\(A=\frac{a-(b+c)}{b+c}+\frac{b-(c+a)}{c+a}+\frac{c-(a+b)}{a+b}=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}-3\)

\(=2-3=-1\)

Vậy $A=-1$

20 tháng 12 2019

\(A=\left\{a_1,a_2,...,a_k,c_1,c_2,...,c_j\right\}\\ B=\left\{b_1,b_2,...,b_m,c_1,c_2,...,c_j\right\}\\ \left|A\right|=k+j,\left|B\right|=m+j\\ A\cup B=\left\{a_1,a_2,...,a_k,b_1,b_2,...,b_m,c_1,c_2,...,c_j\right\}\Rightarrow\left|A\cup B\right|=m+k+j\\ A\cap B=\left\{c_1,c_2,...,c_j\right\}\Rightarrow\left|A\cap B\right|=j\)

\(\left|A\cup B\right|=k+j+m+j-j=\left|A\right|+\left|B\right|-\left|A\cap B\right|\)

NV
31 tháng 3 2019

Một cách dựa vào hàm số:

Đặt \(VT=f\left(x\right)\)

- Nếu 2 trong 3 số a, b, c bằng nhau hoặc một trong 3 số bằng 0 thì pt hiển nhiên có nghiệm

- Nếu không có bất cứ cặp nào bằng nhau và đều khác 0, do tính đối xứng của \(f\left(x\right)\) , không làm mất tính tổng quát, giả sử \(a>b>c\) ta có:

\(f\left(a\right)=a\left(a-b\right)\left(a-c\right)\)

Do \(\left(a-b\right)\left(a-c\right)>0\Rightarrow f\left(a\right)\) cùng dấu với \(a\) \(\Rightarrow a.f\left(a\right)>0\) (1)

\(f\left(b\right)=b\left(b-c\right)\left(b-a\right)\)

Do \(\left(b-c\right)\left(b-a\right)< 0\Rightarrow b.f\left(b\right)< 0\) (2)

\(f\left(c\right)=c\left(c-a\right)\left(c-b\right)\)

Do \(\left(c-a\right)\left(c-b\right)< 0\Rightarrow c.f\left(c\right)>0\) (3)

- Nếu a, c cùng dấu \(\Rightarrow a;b;c\) cùng dấu \(\Rightarrow ab>0\)

Nhân vế với vế của (1) và (2): \(a.b.f\left(a\right).f\left(b\right)< 0\) \(\Rightarrow f\left(a\right).f\left(b\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;b\right)\)

- Nếu \(a,\) c trái dấu \(\Rightarrow ac< 0\) nhân vế với vế của (1) và (3):

\(ac.f\left(a\right).f\left(c\right)>0\Rightarrow f\left(a\right).f\left(c\right)< 0\)

\(\Rightarrow\) Pt có ít nhất 1 nghiệm thuộc \(\left(a;c\right)\)

Vậy pt đã cho luôn luôn có nghiệm

28 tháng 4 2019

nhở a,b,c<0 s pn ! lm lại nhé

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\) A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. \(a^2\) Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp đều S.ABCD...
Đọc tiếp

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\)

B. \(a^2\sqrt{3}\)

C. \(a^2\sqrt{2}\)

D. \(a^2\)

Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC)

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a , điểm M thuộc cạnh SC sao cho SM = 2MC . Mặt phẳng (P) chứa AM và song song với BD . Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi (P)

A. \(\frac{\sqrt{3}a^2}{5}\) C. \(\frac{2\sqrt{26}a^2}{15}\) D. \(\frac{2\sqrt{3}a^2}{5}\)

B. \(\frac{4\sqrt{26}a^2}{15}\)

Câu 4 : Cho hình lập phương ABCD.EFGH . Góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EH}\) bằng :

A. 00

B. 600

C. 900

D. 300

Câu 5 : Tứ diện đều ABCD số đo góc giữa hai véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{AD}\)

A. 450

B. 300

C. 900

D. 600

Câu 6 : Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và A'C'

A. 600

B. 450

C. 900

D. 300

Câu 7 : Cho hình lập phương ABCD.A'B'C'D' , góc giữa hai đường thẳng A'B và B'C là :

A. 450

B. 300

C. 600

D. 900

Câu 8 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy mặt phẳng vuông góc với \(\Delta\) cho trước ?

A. 2

B. 3

C. Vô số

D. 1

Câu 9 : Cho tứ diện đều ABCD . Tích vô hướng \(\overrightarrow{AB}.\overrightarrow{CD}\) bằng

A. \(\frac{a^2}{2}\)

B. 0

C. \(-\frac{a^2}{2}\)

D. \(a^2\)

Câu 10: Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và AD

A. 900

B. 600

C. 450

D. 300

Câu 11 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3a , AD = 2a , SA vuông góc với mặt phẳng (ABCD) , SA = a . Gọi \(\varphi\) là góc giữa đường thẳng SC và mp (ABCD) . Khi đó tan \(\varphi\) bằng bao nhiêu ?

A. \(\frac{\sqrt{11}}{11}\)

B. \(\frac{\sqrt{13}}{13}\)

C. \(\frac{\sqrt{7}}{7}\)

D. \(\frac{\sqrt{5}}{5}\)

Câu 12 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EG}\)

A. 600

B. 450

C. 1200

D. 900

HELP ME !!!!! giải chi tiết từng câu giùm cho mình với ạ

5
NV
6 tháng 6 2020

11.

\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\Rightarrow\widehat{SCA}=\varphi\)

\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)

\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)

12.

Hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{EF}\) song song cùng chiều

\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)

NV
6 tháng 6 2020

8.

Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)

9.

Gọi O là tâm tam giác BCD

\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)

\(CD\perp BO\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)

10.

\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)

12 tháng 9 2016

heo me tim gtnn gtln cua bieu thuc:asinx + bcosx (a,b la hang so,a^2+b^2=/o)? | Yahoo Hỏi & Đáp

12 tháng 9 2016

cám ơn bn nhìu nha 

NV
24 tháng 11 2019

\(\frac{P_nC_n^k}{n!A_n^k}=\frac{n!.\frac{n!}{k!\left(n-k\right)!}}{n!.\frac{n!}{\left(n-k\right)!}}=\frac{1}{k!}\)

Chắc là bạn ghi nhầm đề