K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Đáp án B

Gọi M là trung điểm C’D’. Đặt x là cạnh của hình lập phương

Ta có 


Gọi O là trung điểm A’C. Dễ dàng chứng minh OM ⊥ (A'B'CD)  (xin dành cho bạn đọc).

Suy ra 

16 tháng 5 2019

7 tháng 7 2018

Chọn B.

16 tháng 1 2019

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A

2 tháng 9 2018

20 tháng 8 2023

THAM KHẢO:

Thực hành 1 trang 83 Toán 11 tập 2 Chân trời

a) Vì AA′⊥(ABCD) nên góc giữa đường thẳng AA' và (ABCD) là \(90^0\)

b) CC′⊥(ABCD) nên C là hình chiếu vuông góc của C' lên (ABCD).

Suy ra góc giữa BC' và (ABCD) là \(\widehat{C'BC}\)=\(45^O\) (Vì BCC'C' là hình vuông)

c) Gọi cạnh của hình lập phương là a

Ta có: AC=\(a\sqrt{2}\),tan \(\widehat{ACA'}\)=\(\dfrac{1}{\sqrt{2}}\) nên \(\widehat{ACA'}\)=\(35^O\)

AA′⊥(ABCD) nên A là hình chiếu vuông góc của A' lên (ABCD)

Suy ra góc giữa A'C và (ABCD) là \(\widehat{ACA'}\)=\(35^O\)

NV
27 tháng 3 2022

Do \(AC||A'C'\Rightarrow\widehat{\left(AD;A'C'\right)}=\widehat{\left(AD;AC\right)}=\widehat{CAD}=45^0\)

13 tháng 12 2019

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

b) Xét tứ giác A’BCD’ có BC//A’D’ và BC = A’D’

=> tứ giác A’BCD’ là hình bình hành

=> BA’ // CD’ ( tính chất của hình bình hành)

Tương tự, tứ giác ABC’D’ là hình bình hành nên BC’//AD’

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

Gọi O và O’ là tâm của ABCD và A’B’C’D’.

Gọi H và I lần lượt là tâm của hai tam giác đều BA’C’ và ACD’.

* Xét ( BB’D’D) có BO’// D’O nên OI // HB

Lại có: O là trung điểm BD

=> I là trung điểm của HD: IH = ID (1)

* Xét (BB’D’D) có D’O// BO’ nên D’I // HO’

Lại có: O’ là trung điểm của B’D’ nên H là trung điểm B’I: HI = HB’ (2)

Từ (1) và (2) suy ra: Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

* Theo phần trên B'D ⊥ (BA'C) ⇒ IH ⊥ (BA'C)

Mà I ∈ (ACD') nên khoảng cách giữa hai mp song song (ACD’) và ( BA’C’) là độ dài đoạn IH.

Khi đó:

Giải bài 5 trang 119 sgk Hình học 11 | Để học tốt Toán 11

 

Giải bài tập Toán 11 | Giải Toán lớp 11