Cho hình lập phương ABCD.A'B'C'D'. Có bao nhiêu mặt trụ tròn xoay đi qua sáu đỉnh A, B, D...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để A là số nguyên thì \(x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

b: Để B là số nguyên thì \(2x-1\in\left\{1;-1;2;-2;4;-4\right\}\)

hay \(x\in\left\{1;0\right\}\)(do x là số nguyên)

c: Để C là số nguyên thì \(3x-3+10⋮x-1\)

\(\Leftrightarrow x-1\in\left\{1;-1;2;-2;5;-5;10;-10\right\}\)

hay \(x\in\left\{2;0;3;-1;6;-4;11;-9\right\}\)

d: Để D là số nguyên thì \(4x-1⋮x-3\)

\(\Leftrightarrow x-3\in\left\{1;-1;11;-11\right\}\)

hay \(x\in\left\{4;2;14;-8\right\}\)

GV
25 tháng 4 2017

a) (H) có các đường tiệm cận là:

- Tiệm cận ngang y = -1

- Tiệm cận đứng x = -1

hai đường tiềm cận này cắt nhau tại điểm I(-1; -1).

Hình (H') có hai đường tiệm cận cắt nhau tại I'(2;2) nên ta cần phép tịnh tiến theo vector \(\overrightarrow{II'}=\left(2-\left(-1\right);2-\left(-1\right)\right)=\left(3;3\right)\)

b) Hình (H') có phương trình là:

\(y+3=\dfrac{3-\left(x+3\right)}{\left(x+3\right)+1}\) hay là \(y=\dfrac{-4x-12}{x+4}\)

Hình đối xứng với (H') qua gốc tọa độ có phương trình là:

\(-y=\dfrac{-4\left(-x\right)-12}{-x+4}\) hay là: \(y=\dfrac{4x-12}{-x+4}\)

3 tháng 4 2017

a) Phương trình đường thẳng d có dạng: , với t ∈ R.

b) Đường thẳng d vuông góc với mặt phẳng (α): x + y - z + 5 = 0 nên có vectơ chỉ phương

(1 ; 1 ; -1) vì là vectơ pháp tuyến của (α).

Do vậy phương trình tham số của d có dạng:

c) Vectơ (2 ; 3 ; 4) là vectơ chỉ phương của ∆. Vì d // ∆ nên cùng là vectơ chỉ phương của d. Phương trình tham số của d có dạng:

d) Đường thẳng d đi qua hai điểm P(1 ; 2 ; 3) và Q(5 ; 4 ; 4) có vectơ chỉ phương

(4 ; 2 ; -1) nên phương trình tham số có dạng:


26 tháng 5 2017

Hình giải tích trong không gian

Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\) Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) ...
Đọc tiếp

Câu 1 : Một hình trụ có độ dài đường sinh bằng hai lần bán kính và diện tích toàn phần bằng \(\frac{3}{2}\Pi a^2\) . Tính bán kính đáy

A. \(\frac{a}{2}\) B. a C. 2a D. \(\frac{a}{4}\)

Câu 2 : Một hình nón có bán kính đáy bằng 4 và góc ở đỉnh bằng 600 . Diện tích xung quanh của hình nón đã cho bằng

A. \(\frac{64\sqrt{3}\Pi}{3}\) B. \(\frac{32\sqrt{3}\Pi}{3}\) C. \(64\Pi\) D. \(32\Pi\)

Câu 3 : Cắt một hình trụ theo một mặt phẳng song song với trục và cách trục của hình trụ một khoảng bằng 2a , ta được thiết diện là một hình vuông cạnh a . Tính thể tích khối trụ đã cho .

A. \(2\Pi a^3\) B. \(\Pi a^3\) C. \(\Pi a^3\sqrt{3}\) D. \(4\Pi a^3\)

Câu 4 : Một hình nón đỉnh S , đáy là đường tròn tâm O và góc ở đỉnh bằng 1200 . Một mặt phẳng đi qua đỉnh S và cắt hình nón theo một thiết diện là tam giác vuông cân SAB . Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3 . Tính diện tích xung quanh của hình nón

A. \(36\Pi\sqrt{3}\) B. \(27\sqrt{3}\Pi\) C. \(18\sqrt{3}\Pi\) D. \(9\sqrt{3}\Pi\)

Câu 5 : Hình nón đỉnh I và đường tròn tâm O . Bán kính đáy bằng chiều cao của hình nón và bằng a . Hai điểm A , B nằm trên đường tròn đáy sao cho \(AB=\frac{a}{2}\) . Tính thể tích tứ diện IABO

A. \(\frac{a^3\sqrt{5}}{4}\) B. \(\frac{a^3\sqrt{5}}{48}\) C. \(\frac{a^3\sqrt{15}}{16}\) D. \(\frac{a^3\sqrt{15}}{12}\)

0
NV
12 tháng 4 2019

Hướng giải quyết (làm biếng tính toán kiểu này :D):

- Nhận thấy ngay rằng B, C, D thẳng hàng nên A, B, C, D đồng phẳng

\(\Rightarrow\) khoảng cách từ O đến (ABC) và khoảng cách từ O đến (ACD) bằng nhau

\(\Rightarrow\) diện tích tam giác ABC = diện tích tam giác ACD

Mà hai tam giác này chung cạnh đáy AC

\(\Rightarrow\) khoảng cách từ B đến AC bằng khoảng cách từ D đến AC

\(\Rightarrow\) C là trung điểm của BD

Đến đây thì chắc là đơn giản lắm rồi

12 tháng 4 2019

Okay, mình tính ra rồi, cảm ơn bạn. Có gì gợi ý giúp mình câu này luôn nhé.

Chương 3: PHƯƠNG PHÁP TỌA ĐỘ TRONG KHÔNG GIAN.

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC) A. 150 B. 300 C. 450 D. 600 Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A =...
Đọc tiếp

Câu 1 : Cho lăng trụ đứng ABC.A'B'C' có AB = AC = 2a , \(\widehat{BAC}=120^0\) . Biết thể tích lăng trụ đã cho bằng \(a^3\sqrt{3}\) . Tính góc giữa hai mặt phẳng (A'BC) và (ABC)

A. 150 B. 300 C. 450 D. 600

Câu 2 : Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác vuông tại A . Mặt phẳng (A'BC) chia lăng trụ thành hai phần . Tính thể tích V của khối đa diện có chưa đỉnh B' ; biết BC = A'A = a

A. V = \(\frac{\sqrt{3}}{2}a^3\) B. V = \(\frac{1}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\frac{1}{6}a^3\)

Câu 3 : Cho lăng trụ đứng ABC.A'B'C' có đáy ABC vuông cân tại B , AB = \(a\sqrt{2}\) . Góc giữa A'B và mặt phẳng (ACC'A' ) bằng 300 . Tính thể tích khối lăng trụ ABC.A'B'C'

A. 2a3 B. \(2\sqrt{6}a^3\) C. \(\frac{2\sqrt{6}}{3}a^3\) D. \(\frac{2}{3}a^3\)

Câu 4 : Cho lăng trụ đều ABC.A'B'C' có tất cả các cạnh bằng a . Gọi G là trọng tâm tam giác ABC . Mặt phẳng (A'B'G) chia lăng trụ thành 2 phần , tính thể tích phần chứa cạnh AB

A. \(\frac{5a^3\sqrt{3}}{108}\) B. \(\frac{a^3\sqrt{3}}{36}\) C. \(\frac{2a^3\sqrt{3}}{27}\) D. \(\frac{a^3\sqrt{3}}{4}\)

Câu 5 : Tính thể tích V của khối lăng trụ ABC.A'B'C' , tam giác ABC vuông tại B , hình chiếu vuông góc của A lên (ABC) là trung điểm AC . Biết AB = a , BC = \(a\sqrt{3}\) , \(\widehat{\left(A^'B,\left(ABC\right)\right)=45^0}\)

A. V = \(\frac{\sqrt{3}}{8}a^3\) B. V = \(\frac{\sqrt{3}}{4}a^3\) C. V = \(\frac{\sqrt{3}}{2}a^3\) D. V = \(\sqrt{3}a^3\)

4
NV
22 tháng 8 2020

4.

Qua G kẻ đường thẳng song song AB lần lượt cắt AC và BC tại M và N

\(\Rightarrow A'B'NM\) là thiết diện của (A'B'G) và lăng trụ

Theo Talet ta có \(\frac{CM}{AC}=\frac{CN}{BC}=\frac{2}{3}\Rightarrow CM=CN=\frac{2a}{3}\)

Kéo dài A'M, B'N, C'C đồng quy tại P (theo tính chất giao tuyến 3 mặt phẳng)

Do \(CN//B'C'\Rightarrow\frac{PC}{PC'}=\frac{CN}{B'C'}=\frac{2}{3}\Rightarrow\frac{PC}{PC+CC'}=\frac{2}{3}\)

\(\Rightarrow3PC=2\left(PC+a\right)\Rightarrow PC=2a\)

\(\Rightarrow PC'=3a\)

\(MN=\frac{2}{3}BC\Rightarrow S_{CMN}=\frac{4}{9}S_{ABC}=\frac{4}{9}.\frac{a^2\sqrt{3}}{4}=\frac{a^2\sqrt{3}}{9}\)

\(V_{P.A'B'C'}=\frac{1}{3}PC'.S_{A'B'C'}=\frac{1}{3}.3a.\frac{a^2\sqrt{3}}{4}=\frac{a^3\sqrt{3}}{4}\)

\(V_{P.CMN}=\frac{1}{3}PC.S_{CMN}=\frac{1}{3}.2a.\frac{a^2\sqrt{3}}{9}=\frac{2a^3\sqrt{3}}{27}\)

\(\Rightarrow V_{CMN.A'B'C'}=\frac{a^3\sqrt{3}}{4}-\frac{2a^3\sqrt{3}}{27}=\frac{19a^3\sqrt{3}}{108}\)

\(\Rightarrow V_{MNABA'B'}=\frac{a^3\sqrt{3}}{4}-\frac{19a^3\sqrt{3}}{108}=\frac{2a^3\sqrt{3}}{27}\)

NV
22 tháng 8 2020

2.

Đề thiếu dữ kiện ko tính được, chỉ tính được trong trường hợp tam giác ABC là vuông cân.

3.

\(AC=BC=a\sqrt{2}\) ; \(AC=AB\sqrt{2}=2a\)

Gọi M là trung điểm AC \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(ACC'A'\right)\)

\(\Rightarrow\widehat{BA'M}\) là góc giữa A'B và (ACC'A')

\(\Rightarrow\widehat{BA'M}=30^0\)

\(BM=\frac{1}{2}AC=a\)

\(tan\widehat{BA'M}=\frac{BM}{A'M}\Rightarrow A'M=\frac{BM}{tan30^0}=a\sqrt{3}\)

\(A'A=\sqrt{A'M^2-AM^2}=a\sqrt{2}\)

\(V=\frac{1}{2}A'A.AB.BC=a^3\sqrt{2}\)

Ko đáp án nào đúng

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\) Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\)...
Đọc tiếp

Câu 1 : Một hình nón có bán kính đáy r = 2a và chiều cao h = \(a\sqrt{5}\) . Tính diện tích xung quanh của hình nón đó

A. \(12\Pi a^2\) B. \(6\Pi a^2\) C. \(12\Pi a^2\) D. \(\frac{4\Pi}{3}a^3\sqrt{5}\)

Câu 2 : Khối nón có độ dài đường sinh l = \(a\sqrt{6}\) và đường cao bằng bán kính đáy . Tính thể tích khối nón đã cho

A. \(a^3\sqrt{3}\) B. \(3a^3\sqrt{3}\) C. \(a^3\sqrt{6}\) D. \(3a^3\sqrt{2}\)

Câu 3 : Một hình nón có độ dài đường sinh bằng đường kính đáy . Tính tỉ số \(\frac{S_{xq}}{S_{tp}}\)

A. \(\frac{1}{6}\) B. \(\frac{1}{3}\) C. \(\frac{2}{3}\) D. \(\frac{2}{5}\)

Câu 4 : Thiết diện qua đỉnh của hình nón là tam giác vuông cân có diện tích bằng \(3a^2\) và chiều cao của hình nón bằng \(a\sqrt{2}\) . Tính bán kính đáy của hình tròn

A. \(a\sqrt{6}\) B. 4a C. 3a D. 2a

Câu 5 : Cắt một hình trụ không nắp theo một đường sinh và " trải " lên mặt phẳng ta được một hình chữ nhật có diện tích bằng \(4\Pi a^2\) . Biết độ dài đường sinh bằng 2a , tính thể tích khối trụ đã cho

A. \(4\Pi a^3\) B. \(2\Pi a^3\) C. \(\Pi a^3\) D. \(\frac{2}{3}\Pi a^3\)

0
AH
Akai Haruma
Giáo viên
31 tháng 7 2017

Lời giải:

\(\frac{a}{b}\) chưa tối giản nên tồn tại một số \(d\in\mathbb{N}>1\) sao cho \(a\vdots d,b\vdots d\)

Khi đó \(a-b\vdots d\)

a)

Thấy $a$ và $a-b$ đều chia hết cho $d$ nên \(\frac{a}{a-b}\) không phải phân số tối giản

b) Vì \(a\vdots d\)\(b\vdots d\) nên \(2a,2b\vdots d\). Do đó \(a-2b\vdots d\)

Thấy $2a$ và $a-2b$ đều chia hết cho $d$ nên \(\frac{2a}{a-2b}\) không phải phân số tối giản.

Ta có đpcm.

P/s: Phiền bạn từng sau đăng bài nên chú ý đăng đúng box. Bài này nên đăng ở box toán 6 thôi nhé.

1 tháng 8 2017

Thanks you cậu