Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biểu diễn đường tròn ngoại tiếp hình vuông ABCD cạnh a như hình vẽ
Khi đó: Tâm đường tròn là giao điểm 2 đường chéo
Chọn A.
Thiết diện qua trục của hình trụ là hình vuông nê hình trụ có bán kính đáy là a, chiều cao là 2a.
Do đó thể tích khối trụ là:
V = πR 2 h = 2 πa 3
Chọn B
Gọi a là cạnh của hình lập phương ta có hình trụ tròn xoay ngoại tiếp hình lập phương đó có bán kính đáy r = (a 2 )/2 và chiều cao h = a.
Suy ra:
Hình trụ có chiều cao h = a và bán kính đáy
Do đó ta có: S xq = 2 πrh = πa 2 2
Chọn A.
Hình trụ có bán kính đáy a và đường cao a 3 nên:
S xq = 2 π rh = 2 π a.a 3 = 2 π a 2 3
Đáp án D
Gọi M, N lần lượt là trung điểm AB và CD.
Khi đó OM ⊥ AB và O’N ⊥ CD
Gọi I là giao điểm của MN và OO’
Đặt R = OA và h = OO’. Khi đó ΔIOM vuông cân tại O nên: