Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A.
Đường thẳng EF cắt A'D' và A'B' tại N;M;AN cắt DD' tại P;AM cắt BB' tại Q. Khi đó thiết diện của hình lập phương khi cắt bởi mặt phẳng (AEF) là ngũ giác APFEQ
Từ giả thiết ta có V 1 = V A ' B ' D ' A P F E Q và V 2 = V A B C D C ' P F E Q ' .
Gọi
V = V A B C D . A ' B ' C ' D ' ; V 3 = V A . A ' M N ; V 4 = V P F D ' N ; V 5 = V Q M B ' E .
Do tính đối xứng của hình lập phương nên V 4 = V 5 .
Nhận thấy
V 3 = 1 6 A A ' . A ' M . A ' N = 1 6 . a . 3 a 2 . 3 a 2 = 3 a 2 8 (đvtt).
V 4 = 1 6 . D ' P . D ' F . D ' N = 1 6 . a 3 . a 2 . a 2 = a 3 72 (đvtt);
V 1 = V 3 − 2 V 4 = 3 a 3 8 − 2. a 3 72 = 25 a 3 72 (đvtt).
V 2 = V − V 1 = a 3 − 25 a 3 72 = 47 a 3 72 (đvtt).
Vậy V 1 V 2 = 25 47 .
Chọn A
Dựng thiết diện: PQ qua A và song song với BD ( vì EF//B’D’//BD )
PE cắt các cạnh BB’, CC’ tại M và I. Tương tự ta tìm được giao điểm N. T iết diện là AMEFN.
Dựa vào đường trung bình BD và định lí Ta-lét cho các tam giác IAC, DNQ, D’NF ta tính được: I C ' = a 3 , N D = 2 a 3 Tương tự ta tính được: M B = 2 a 3
Đáp án A
Nối chia khối tứ diện ABCD thành hai khối đa diện gồm PQD.NMB và khối đa diện chứa đỉnh A có thể tích A.
Dễ thấy P,Q lần lượt là trọng tâm của ∆BCE, ∆ABE
Gọi S là diện tích
Họi h là chiều cao của tứ diện ABCD
Khi đó
Suy ra
Chọn A
Phương pháp: .
Cách giải: Dựng hình như hình vẽ.
Trước hết ta tính thể tích khối chóp A.A'MN.