K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

Ta có \(3AB^2=AC'^2=9a^2\) \(\Leftrightarrow AB^2=3a^2\Leftrightarrow AB=a\sqrt{3}\)

\(\Rightarrow V_{hlp}=AB^3=3a^3\sqrt{3}\) (đơn vị thể tích)

14 tháng 6 2021

 

Ta có ( CC' , (AB'C)) = ( CC' ,( ADC'B')       (1)                                               Có CO vuông góc C'D suy ra CO vg góc ( ADC'B' )                          Suy ra (1) = góc CC'O = góc CC'D = 45 độ 

 

29 tháng 10 2021

mn giúp mk vớiiiiiiiiii

NV
1 tháng 11 2021

Gọi H là hình chiếu vuông góc của A' lên (ABCD)

Do \(A'A=A'B=A'D\) \(\Rightarrow H\) trùng tâm đường tròn ngoại tiếp tam giác ABD

\(\Rightarrow H\) là trung điểm BD

\(AC=\sqrt{AB^2+AD^2}=2a\)\(\Rightarrow AH=\dfrac{1}{2}AC=a\)

\(\Rightarrow A'H=\sqrt{A'A^2-AH^2}=a\sqrt{3}\)

\(\Rightarrow V=A'H.AB.AD=3a^3\)

NV
31 tháng 8 2021

\(AC=AB\sqrt{2}=4a\)

Áp dụng định lý Pitago:

\(CC'=\sqrt{\left(AC'\right)^2-AC^2}=3a\)

\(\Rightarrow V=3a.\left(2a\sqrt{2}\right)^2=24a^3\)

Chọn A

9 tháng 5 2018

Đáp số: \(\dfrac{a\sqrt{2}}{4}\) .Hỏi đáp Toán

Dễ thấy đường thẳng IJ song song với mặt phẳng (BB'D'D) nên khoảng cách giữa 2 đường thẳng IJ và B'D' bằng khoảng cách giữa đường thẳng IJ và mặt phẳng (BB'D'D) bằng khoảng cách từ điểm J tới mặt phẳng (BB'D'D).

Mặt khác, A'C' vuông góc với B'D' và Đ' nên A'C' vuông góc với (BB'D'D). Gọi O' là giao điểm 2 đường chéo B'D' và A'C'; E là trung điểm đoạn B'O thì JE là đường trung bình tam giác B'OC' nên \(JE\)vuông góc với (BB'D'D) và bằng \(\dfrac{1}{2}OC'=\dfrac{1}{4}A'C'=\dfrac{a\sqrt{2}}{4}\).

22 tháng 6 2019

Bạn thử tải app này xem có đáp án không nhé <3 https://giaingay.com.vn/downapp.html

20 tháng 10 2021

A B C D A' B' C' D'

\(AA'=\dfrac{2a}{\sqrt{3}}\)

\(V=AA'\cdot S_{ABCD}=\dfrac{16a^3}{\sqrt{3}}\)