K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Đáp án B

Gọi tâm O, O’ lần lượt là tâm của ABCD, A’B’C’D’. Ta có 

Qua I ta kẻ đường thẳng d song song BD cắt BB', DD' lần lượt tại M, N . Mặt phẳng  ( α )  chính là mặt phẳng (KMAN) chia khối lập phương thành 2 phần.

 

Ta có 2 phần khối đa diện đối xứng qua (AA'C'C) nên ta chỉ cần xét một nửa thể tích của mỗi phần như sau:

NV
4 tháng 8 2020

1/

Bạn chỉ cần tìm sin, cos trong \(\left[0;2\pi\right]\) là đủ (vì cả 2 hàm đều tuần hoàn với chu kì \(2\pi\))

Đặt \(\left\{{}\begin{matrix}x=sina\\y=cosa\end{matrix}\right.\) với \(a\in\left[0;2\pi\right]\)

\(\Rightarrow4sina.cosa\left(2cos^2a-1\right)=1\)

\(\Leftrightarrow2sin2a.cos2a=1\Leftrightarrow sin4a=1\)

\(\Rightarrow4a=\frac{\pi}{2}+k2\pi\Rightarrow a=\frac{\pi}{8}+\frac{k\pi}{2}\)

\(\Rightarrow0\le\frac{\pi}{8}+\frac{k\pi}{2}\le2\pi\Rightarrow a=\left\{\frac{\pi}{8};\frac{5\pi}{8};\frac{9\pi}{8};\frac{13\pi}{8};\frac{17\pi}{8}\right\}\)

\(\Rightarrow\left(x;y\right)=\left(sin\frac{\pi}{8};cos\frac{\pi}{8}\right);\left(sin\frac{5\pi}{8};cos\frac{5\pi}{8}\right)...\)

2.

\(sinx=\frac{1}{3}\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)+k2\pi\\x=\pi-arcsin\left(\frac{1}{3}\right)+l2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arcsin\left(\frac{1}{3}\right)\\x=\pi-arcsin\left(\frac{1}{3}\right)\end{matrix}\right.\)

(Vì \(0< \frac{1}{3}< 1\) nên \(0< arcsin\left(\frac{1}{3}\right)< \frac{\pi}{2}\) do đó nếu \(k>0\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi>2\pi\) ; nếu \(k\le-1\Rightarrow arcsin\left(\frac{1}{3}\right)+k2\pi\le-\frac{3\pi}{2}\) đều ko thuộc \(\left[0;\pi\right]\Rightarrow k=0\).

Tương tự với \(l\))

5 tháng 8 2020

Cho mình hỏi sao từ 0 < 1/3 < 1 thì suy ra đc 0 < arcsin (1/3) < pi/2 vậy?

NV
1 tháng 5 2019

S A B C D H M N O

Cần câu d thôi đúng ko bạn?

\(ID\) cắt (SAC) tại A mà \(IA=2DA\Rightarrow d\left(I;\left(SAC\right)\right)=2d\left(D;\left(SAC\right)\right)\)

\(BD\) cắt (SAC) tại O mà \(OB=OD\Rightarrow d\left(D;\left(SAC\right)\right)=d\left(B;\left(SAC\right)\right)\)

Mặt khác \(BA=2HA\Rightarrow d\left(B;\left(SAC\right)\right)=2d\left(H;\left(SAC\right)\right)\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=4d\left(H;\left(SAC\right)\right)\)

Từ H kẻ \(HM\perp AC\), từ H kẻ \(HN\perp SM\Rightarrow HN=d\left(H;\left(SAC\right)\right)\)

Áp dụng hệ thức lượng: (chú ý rằng \(AH=\frac{AB}{2}=\frac{a}{2};OH=\frac{AD}{2}=\frac{a\sqrt{2}}{2}\))

\(\frac{1}{HM^2}=\frac{1}{AH^2}+\frac{1}{OH^2}\Rightarrow HM=\frac{AH.OH}{\sqrt{AH^2+OH^2}}=\frac{a\sqrt{6}}{6}\)

\(\frac{1}{HN^2}=\frac{1}{SH^2}+\frac{1}{HM^2}\Rightarrow HN=\frac{SH.HM}{\sqrt{SH^2+HM^2}}=\frac{a\sqrt{57}}{19}\)

\(\Rightarrow d\left(I;\left(SAC\right)\right)=\frac{4a\sqrt{57}}{19}\)

1 tháng 5 2019

cho em hỏi gửi câu hỏi lên sao vậy ạ.

NV
9 tháng 6 2020

Dễ dàng chứng minh \(SH\perp\left(ABCD\right)\)

Gọi N là trung điểm SH \(\Rightarrow MN//HC\) (đường trung bình)

Trong mặt phẳng đáy, qua D kẻ đường thẳng song song HC cắt BA kéo dài tại P

\(\Rightarrow HC//\left(MNPD\right)\Rightarrow d\left(HC;DM\right)=d\left(HC;\left(MNPD\right)\right)=d\left(H;\left(MNPD\right)\right)\)

Trong mặt phẳng đáy, từ H kẻ \(HE\perp DP\)

\(\Rightarrow DP\perp\left(HEN\right)\)

Trong tam giác vuông HEN, từ H kẻ \(HF\perp EN\Rightarrow\left\{{}\begin{matrix}HF\perp EN\\HF\perp DP\end{matrix}\right.\)

\(\Rightarrow HF\perp\left(MNPD\right)\Rightarrow HF=d\left(H;\left(MNPD\right)\right)\)

\(SH=\frac{AB\sqrt{3}}{2}\Rightarrow SH=\frac{a\sqrt{3}}{2}\Rightarrow NH=\frac{a\sqrt{3}}{4}\)

\(AP=AH=\frac{a}{2}\Rightarrow DP=\sqrt{AP^2+AD^2}=\frac{3a}{2}\)

\(PH=CD=a\Rightarrow HE=PH.sin\widehat{DPA}=PH.\frac{AD}{DP}=\frac{2a\sqrt{2}}{3}\)

\(\frac{1}{HF^2}=\frac{1}{HE^2}+\frac{1}{NH^2}\Rightarrow HF=\frac{HE.NH}{\sqrt{HE^2+NH^2}}=a\sqrt{\frac{24}{155}}\)

14 tháng 7 2017

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\) A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. \(a^2\) Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC) A. 300 B. 450 C. 600 D. 900 Câu 3 : Cho hình chóp đều S.ABCD...
Đọc tiếp

Câu 1 :Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\)

B. \(a^2\sqrt{3}\)

C. \(a^2\sqrt{2}\)

D. \(a^2\)

Câu 2: Cho tam giác ABC vuông cân tại B và AC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SB và (ABC)

A. 300

B. 450

C. 600

D. 900

Câu 3 : Cho hình chóp đều S.ABCD có tất cả các cạnh bằng a , điểm M thuộc cạnh SC sao cho SM = 2MC . Mặt phẳng (P) chứa AM và song song với BD . Tính diện tích thiết diện của hình chóp S.ABCD cắt bởi (P)

A. \(\frac{\sqrt{3}a^2}{5}\) C. \(\frac{2\sqrt{26}a^2}{15}\) D. \(\frac{2\sqrt{3}a^2}{5}\)

B. \(\frac{4\sqrt{26}a^2}{15}\)

Câu 4 : Cho hình lập phương ABCD.EFGH . Góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EH}\) bằng :

A. 00

B. 600

C. 900

D. 300

Câu 5 : Tứ diện đều ABCD số đo góc giữa hai véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{AD}\)

A. 450

B. 300

C. 900

D. 600

Câu 6 : Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và A'C'

A. 600

B. 450

C. 900

D. 300

Câu 7 : Cho hình lập phương ABCD.A'B'C'D' , góc giữa hai đường thẳng A'B và B'C là :

A. 450

B. 300

C. 600

D. 900

Câu 8 : Trong không gian cho đường thẳng \(\Delta\) và điểm O . Qua O có mấy mặt phẳng vuông góc với \(\Delta\) cho trước ?

A. 2

B. 3

C. Vô số

D. 1

Câu 9 : Cho tứ diện đều ABCD . Tích vô hướng \(\overrightarrow{AB}.\overrightarrow{CD}\) bằng

A. \(\frac{a^2}{2}\)

B. 0

C. \(-\frac{a^2}{2}\)

D. \(a^2\)

Câu 10: Cho hình lập phương ABCD.A'B'C'D' . Tính góc giữa hai đường thẳng AB và AD

A. 900

B. 600

C. 450

D. 300

Câu 11 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có AB = 3a , AD = 2a , SA vuông góc với mặt phẳng (ABCD) , SA = a . Gọi \(\varphi\) là góc giữa đường thẳng SC và mp (ABCD) . Khi đó tan \(\varphi\) bằng bao nhiêu ?

A. \(\frac{\sqrt{11}}{11}\)

B. \(\frac{\sqrt{13}}{13}\)

C. \(\frac{\sqrt{7}}{7}\)

D. \(\frac{\sqrt{5}}{5}\)

Câu 12 : Cho hình lập phương ABCD.EFGH . Hãy xác định góc giữa cặp véc tơ \(\overrightarrow{AB}\)\(\overrightarrow{EG}\)

A. 600

B. 450

C. 1200

D. 900

HELP ME !!!!! giải chi tiết từng câu giùm cho mình với ạ

5
NV
6 tháng 6 2020

11.

\(SA\perp\left(ABCD\right)\Rightarrow\) AC là hình chiếu vuông góc của SC lên (ABCD)

\(\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(\Rightarrow\widehat{SCA}=\varphi\)

\(AC=BD=\sqrt{AB^2+AD^2}=a\sqrt{13}\)

\(tan\varphi=\frac{SA}{AC}=\frac{\sqrt{13}}{13}\)

12.

Hai vecto \(\overrightarrow{AB}\)\(\overrightarrow{EF}\) song song cùng chiều

\(\Rightarrow\left(\overrightarrow{AB};\overrightarrow{EG}\right)=\left(\overrightarrow{EF};\overrightarrow{EG}\right)=\widehat{GEF}=45^0\)

NV
6 tháng 6 2020

8.

Qua O có 1 và chỉ 1 mặt phẳng vuông góc \(\Delta\)

9.

Gọi O là tâm tam giác BCD

\(\Rightarrow AO\perp\left(BCD\right)\Rightarrow AO\perp CD\)

\(CD\perp BO\) (trung tuyến đồng thời là đường cao)

\(\Rightarrow CD\perp\left(ABO\right)\Rightarrow CD\perp AB\)

\(\Rightarrow\overrightarrow{AB}.\overrightarrow{CD}=0\)

10.

\(AB\perp AD\Rightarrow\widehat{BAD}=90^0\)

4 tháng 2 2020

Sửa xíu: \(\overrightarrow{AM}=k\overrightarrow{AC'}\)

Câu 1 : Tìm mệnh đề sai trong các mệnh đề sau đây ? A. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm bất kỳ trên đường thẳng a đến một điểm bất kỳ trên đường thẳng b B. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường này và (P) vuông góc với đường kia C. Khoảng...
Đọc tiếp

Câu 1 : Tìm mệnh đề sai trong các mệnh đề sau đây ?

A. Khoảng cách giữa hai đường thẳng chéo nhau a và b là khoảng cách từ một điểm bất kỳ trên đường thẳng a đến một điểm bất kỳ trên đường thẳng b

B. Nếu hai đường thẳng a và b chéo nhau và vuông góc với nhau thì đường vuông góc chung của chúng nằm trong mặt phẳng (P) chứa đường này và (P) vuông góc với đường kia

C. Khoảng cách giữa hai mặt phẳng song song là khoảng cách từ một điểm M bất kì trên mặt hẳng này đến mặt phẳng kia

D. Khoảng cách giữa đường thẳng a và mặt phẳng (P) song song với a là khoảng cách từ một điểm A bất kì thuộc a tới mặt phẳng (P)

Câu 2 : Cho hình lập phương ABCD.A1B1C1D1 . Gọi \(\alpha\) là góc giữa hai mặt phẳng (A1D1CB) và (ABCD) . Chọn khẳng định đúng trong các khẳng định sau ?

A. \(\alpha=45^0\) B. \(\alpha=30^0\) C. \(\alpha=60^0\) D. \(\alpha=90^0\)

Câu 3 : Cho hình hộp chữ nhật ABCD.A'B'C'D' . Chọn mệnh đề sai trong các mệnh đề sau :

A. Khoảng cách giữa đường thẳng A'D và (BCC'B) bằng BD

B. Khoảng cách giữa hai đường thẳng A'D' và BD bằng AA'

C. Khoảng cách giữa hai mặt phẳng (ABB'A' ) và ( CDD'C' ) bằng BC

D. Khoảng cách từ điểm A' đến mặt phẳng (ABCD) bằng AA'

Câu 4 : Cho hình thang vuông ABCD vuông ở A và D , AD = 2a . Trên đường thẳng vuông góc tại D với (ABCD) lấy điểm S với SD = \(a\sqrt{2}\) . Tính khoảng cách giữa đường thẳng DC và (SAB)

A. \(a\sqrt{2}\) B. \(\frac{a}{\sqrt{2}}\) C. \(\frac{2a}{\sqrt{3}}\) D. \(\frac{a\sqrt{3}}{3}\)

Câu 5 : Trong lăng trụ đều , khẳng định nào sau đây sai ?

A. Các mặt bên là những hình thoi

B. Các mặt bên ;à những hình chữ nhật nằm trong mặt phẳng vuông góc với đáy

C. Đáy là đa giác đều

D. Các cạnh bên là những đường cao

Câu 6 : Cho hình chóp S.ABC có SA vuông góc (ABC) . Góc giữa SB với (ABC) là góc giữa :

A. SB và AB B. SB và BC C. SB và AC D. SB và SC

Câu 7 : Cho hình hộp chữ nhật ABCD.A'B'C'D' . Khi đó , véc tơ bằng véc tơ \(\overrightarrow{AB}\) là véc tơ nào dưới đây ?

A. \(\overrightarrow{B^'A^'}\)

B. \(\overrightarrow{D^'C^'}\)

C. \(\overrightarrow{CD}\)

D. \(\overrightarrow{BA}\)

Câu 8 : Cho hình chóp S.ABC có ABC là tam giác vuông tại B và \(SA\perp\left(ABC\right)\) . Gọi AH là đường cao của tam giác SAB , thì khẳng định nào sau đây đúng .

A. \(AH\perp SA\) B. \(AH\perp BC\) C. \(SC\perp AC\) D. \(AB\perp AC\)

Câu 9 : Cho hình lập phương ABCD.EFGH có cạnh bằng a . Tính \(\overrightarrow{AB}.\overrightarrow{EG}\)

A. \(\frac{a^2\sqrt{2}}{2}\) B. \(a^2\sqrt{3}\) C. \(a^2\sqrt{2}\) D. a2

Câu 10 : Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O . Biết SA = SC , SB = SD . Khẳng định nào sau đây là sai ?

A. \(SO\perp\left(ABCD\right)\) B. \(SO\perp AC\) C. \(SO\perp BD\) D. \(SO\perp SA\)

Câu 11 : Cho tam giác ABC vuông cân tại A và BC = a . Trên đường thẳng qua A vuông góc với (ABC) lấy điểm S sao cho SA = \(\frac{a\sqrt{6}}{2}\) . Tính số đo giữa đường thẳng SA và (ABC)

A. 300 B. 450 C. 600 D. 900

Câu 12 : Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật , cạnh bên SA vuông góc với mặt phẳng đáy . Gọi AE , AF lần lượt là đường cao của tam giác SAB và tam giác SAD . Khẳng định nào dưới đây là đúng ?

A. \(SC\perp\left(AFB\right)\) B. \(SC\perp\left(AEC\right)\) C. \(SC\perp\left(AEF\right)\) D. \(SC\perp\left(AED\right)\)

Câu 13 : Cho hình chóp S.ABC có đáy là tam giác đều cạnh a , mặt bên SBC là tam giác cân tại S , SB = 2a , \(\left(SBC\right)\perp\left(ABC\right)\) . Gọi \(\alpha\) là góc giữa hai mặt phẳng (SAB) và (SAC) , tính \(cos\alpha\)

A. \(cos\alpha=-\frac{3}{7}\) B. \(cos\alpha=\frac{4}{7}\) C. \(cos\alpha=\frac{3}{7}\) D. \(cos\alpha=\frac{2}{7}\)

Câu 14 : Cho hình lăng trụ tứ giác đều ABCD.A'B'C'D' có cạnh đáy bằng a , góc giữa hai mặt phẳng (ABCD) và (AC'B) có số đo là 600 . Khi đó cạnh bên của hình lăng trụ bằng

A. \(a\sqrt{3}\) B. a C. 2a D. \(a\sqrt{2}\)

Câu 15 : Cho hình chóp tứ giác đều S.ABCD có cạnh đáy và cạnh bên bằng a , gọi O là tâm của đáy ABCD . Khoảng cách từ O đến mặt phẳng (SBC) bằng ?

A. \(\frac{3a}{2}\) B. \(\frac{a\sqrt{6}}{3}\) C. \(\frac{a\sqrt{6}}{6}\) D. \(\frac{a\sqrt{3}}{6}\)

Câu 16 : Cho hình chóp S.ABCD có đáy ABCD là hình vuông , M là trung điểm của SB . Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy (ABCD) , biết SD = \(2a\sqrt{5}\) , SC tạo với mặt đáy (ABCD) một góc bằng 600 . Khoảng cách từ A đến mp (SCD) bằng ?

A. \(\frac{2a\sqrt{15}}{\sqrt{79}}\) B. \(\frac{a\sqrt{15}}{\sqrt{19}}\) C. \(\frac{2a\sqrt{15}}{\sqrt{19}}\) D. \(\frac{a\sqrt{15}}{\sqrt{79}}\)

help me !!!!!!! LÀM CHI TIẾT GIÚP MÌNH VỚI Ạ !!!

5
NV
12 tháng 6 2020

16.

Đặt cạnh của đáy là x

\(DM=\sqrt{AD^2+AM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)

\(CM=\sqrt{BC^2+BM^2}=\sqrt{x^2+\left(\frac{x}{2}\right)^2}=\frac{x\sqrt{5}}{2}\)

\(\Rightarrow DM=CM\Rightarrow\Delta_vSMD=\Delta_vSMC\)

\(\Rightarrow SC=SD=2a\sqrt{5}\)

\(SM\perp\left(ABCD\right)\Rightarrow\widehat{SCM}\) là góc giữa SC và (ABCD) \(\Rightarrow\widehat{SCM}=60^0\)

\(\Rightarrow\left\{{}\begin{matrix}CM=SC.cos60^0=a\sqrt{5}\\SM=SC.sin60^0=a\sqrt{15}\end{matrix}\right.\) \(\Rightarrow AB=x=\frac{2CM}{\sqrt{5}}=2a\)

Gọi N là trung điểm CD \(\Rightarrow CD\perp\left(SMN\right)\)

\(AM//CD\Rightarrow AM//\left(SCD\right)\Rightarrow d\left(A;\left(SCD\right)\right)=d\left(M;\left(SCD\right)\right)\)

Từ M kẻ \(MM\perp SN\Rightarrow MH\perp\left(SCD\right)\Rightarrow MH=d\left(H;\left(SCD\right)\right)\)

\(MN=AB=2a\)

\(\frac{1}{MH^2}=\frac{1}{SM^2}+\frac{1}{MN^2}\Rightarrow MH=\frac{SM.MN}{\sqrt{SM^2+MN^2}}=\frac{2a\sqrt{15}}{\sqrt{19}}\)

NV
12 tháng 6 2020

14.

Do \(\widehat{C'BC}\) là góc giữa (ABCD) và (ABC') nên \(\widehat{C'BC}=60^0\)

\(\Rightarrow CC'=BC.tan60^0=a\sqrt{3}\)

15.

Gọi H là trung điểm BC \(\Rightarrow OH\perp BC\)

Chóp tứ giác đều \(\Rightarrow SO\perp\left(ABCD\right)\Rightarrow SO\perp BC\)

\(\Rightarrow BC\perp\left(SOH\right)\)

Từ O kẻ \(OK\perp SH\Rightarrow OK\perp\left(SBC\right)\Rightarrow OK=d\left(O;\left(SBC\right)\right)\)

\(OH=\frac{1}{2}AB=\frac{a}{2}\) ; \(AC=a\sqrt{2}\Rightarrow OA=\frac{a\sqrt{2}}{2}\)

\(SO=\sqrt{SA^2-OA^2}=\frac{a\sqrt{2}}{2}\)

\(\frac{1}{OK^2}=\frac{1}{SO^2}+\frac{1}{OH^2}\Rightarrow OK=\frac{SO.OH}{\sqrt{SO^2+OH^2}}=\frac{a\sqrt{6}}{6}\)

NV
31 tháng 8 2020

Bạn sai ở chỗ này:

\(2cos2x=2cos2x.sinx\)

\(\Leftrightarrow sinx=\frac{2cos2x}{2cos2x}\)

Đúng ra phải là: \(\Leftrightarrow2cos2x.sinx-2cos2x=0\)

\(\Leftrightarrow2cos2x\left(sinx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sinx=1\end{matrix}\right.\)