K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:A. \({30^ \circ }\).                 B. \({45^ \circ }\).                 C. \({60^ \circ }\).                  D. \({90^ \circ }\).b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:A. 1.                                            B. 2....
Đọc tiếp

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).

a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:

A. 1.                                            

B. 2.                                            

C. \(\sqrt 2 \).                         

D. \(\frac{1}{{\sqrt 2 }}\).

c) Số đo của góc nhị diện \(\left[ {N,MM',P} \right]\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

d) Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {NQQ'N'} \right)\) bằng:

A. \(a\).                                    

B. \(\frac{a}{{\sqrt 2 }}\).  

C. \(a\sqrt 2 \).                      

D. \(\frac{a}{2}\).

1
22 tháng 8 2023

a) Đáp án:B

b) Đáp án:D

c) Đáp án:B

d) Đáp án:B

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A

21 tháng 8 2019

Đáp án A

Ta có: 

Chọn A

15 tháng 5 2023

Mình cảm ơn 

4 tháng 7 2017

Đáp án A

 

vì tam giác ABD′ đều cạnh bằng

3 tháng 6 2018

19 tháng 1 2018

Đáp án B.

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507