K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

24 tháng 6 2017

20 tháng 2 2019

30 tháng 5 2018

15 tháng 9 2018

Chọn B.

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Tam giác ABC vuông cân tại A, BC = 42cm 

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

- Tứ diện A.A’BC là tứ diện vuông tại A. Gọi h = d( A, (A’BC)), ta có:

Đề thi Học kì 2 Toán 11 có đáp án (Đề 1)

16 tháng 10 2018

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có \(BB' \bot \left( {ABC} \right);BB' \subset \left( {BCC'B'} \right) \Rightarrow \left( {ABC} \right) \bot \left( {BCC'B'} \right)\)

\(\left( {ABC} \right) \cap \left( {BCC'B'} \right) = BC\)

(ABC): Kẻ \(AH \bot BC\)

\( \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A,\left( {BCC'B'} \right)} \right) = AH\)

Xét tam giác ABC vuông cân tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{2}{{{a^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow AH = \frac{{a\sqrt 2 }}{2}\)

b) +) Ta có \(AB \bot AC,AB \bot AA'\left( {AA' \bot \left( {ABC} \right)} \right) \Rightarrow AB \bot \left( {ACC'A'} \right);AC' \subset \left( {ACC'A'} \right) \Rightarrow AC' \bot AB\)

Do đó tam giác ABC' là tam giác vuông.

+) Trên (ABC’) kẻ \(AK \bot BC' \Rightarrow d\left( {A,BC'} \right) = AK\)

Xét tam giác ACC’ vuông tại C có

\(A{C'^2} = A{C^2} + C{C'^2} = {a^2} + {h^2}\) (Định lí Pytago)

Xét tam giác ABC’ vuông tại A có

\(\begin{array}{l}\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{{C'}^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{a^2} + {h^2}}} = \frac{{2{a^2} + {h^2}}}{{{a^2}\left( {{a^2} + {h^2}} \right)}} \Rightarrow A{K^2} = \frac{{{a^2}\left( {{a^2} + {h^2}} \right)}}{{2{a^2} + {h^2}}}\\ \Rightarrow AK = a.\sqrt {\frac{{{a^2} + {h^2}}}{{2{a^2} + {h^2}}}} \end{array}\)

 

30 tháng 7 2017

Đáp án C

Ta dễ dàng chứng minh được AA'//(BCC'B')

Gọi G là trọng tâm của tam giác ABC. Suy ra A'G ⊥ (ABC)

Ta có  

Lại có 

 Ta luôn có 

Gọi M, M' lần lượt là trung điểm của BC và B'C'. Ta có  .

Mà MM'//BB' nên BC ⊥ BB' => BCC'B' là hình chữ nhật 

Từ: 

12 tháng 4 2019