K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2018

15 tháng 4 2017

Gọi H là hình chiếu vuông góc của A lên BC.

Gọi K là hình chiếu vuông góc của A lên A’H.

Áp dụng định lí pytago vào tam giác vuông ABC ta tính được AB= a.

26 tháng 5 2017

Hỏi đáp Toán

3 tháng 7 2016

tính thể tích sao vậy

23 tháng 12 2017

NV
15 tháng 10 2020

Gọi N là trung điểm A'B' \(\Rightarrow MN//AA'\Rightarrow N\in\left(P\right)\)

Trong mặt phẳng (A'B'C), gọi E là trung điểm A'C

\(\Rightarrow NE\) là đường trung bình tam giác A'B'C

\(\Rightarrow NE//B'C\) , mà \(N\in\left(P\right)\Rightarrow E\in\left(P\right)\)

Trong mặt phẳng (ACC'A'), qua E kẻ đường thẳng song song AA' cắt AC tại I

\(\Rightarrow IE\) là đường trung bình tam giác ACA'

\(\Rightarrow I\) là trung điểm AC hay \(\frac{IA}{IC}=1\)

20 tháng 10 2020

Nguyễn Việt Lâm

Anh vẽ hình giups e vs đc k ah??

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

a) Ta có \(BB' \bot \left( {ABC} \right);BB' \subset \left( {BCC'B'} \right) \Rightarrow \left( {ABC} \right) \bot \left( {BCC'B'} \right)\)

\(\left( {ABC} \right) \cap \left( {BCC'B'} \right) = BC\)

(ABC): Kẻ \(AH \bot BC\)

\( \Rightarrow AH \bot \left( {BCC'B'} \right) \Rightarrow d\left( {A,\left( {BCC'B'} \right)} \right) = AH\)

Xét tam giác ABC vuông cân tại A có

\(\frac{1}{{A{H^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{C^2}}} = \frac{2}{{{a^2}}}\) (hệ thức lượng trong tam giác vuông)

\( \Rightarrow AH = \frac{{a\sqrt 2 }}{2}\)

b) +) Ta có \(AB \bot AC,AB \bot AA'\left( {AA' \bot \left( {ABC} \right)} \right) \Rightarrow AB \bot \left( {ACC'A'} \right);AC' \subset \left( {ACC'A'} \right) \Rightarrow AC' \bot AB\)

Do đó tam giác ABC' là tam giác vuông.

+) Trên (ABC’) kẻ \(AK \bot BC' \Rightarrow d\left( {A,BC'} \right) = AK\)

Xét tam giác ACC’ vuông tại C có

\(A{C'^2} = A{C^2} + C{C'^2} = {a^2} + {h^2}\) (Định lí Pytago)

Xét tam giác ABC’ vuông tại A có

\(\begin{array}{l}\frac{1}{{A{K^2}}} = \frac{1}{{A{B^2}}} + \frac{1}{{A{{C'}^2}}} = \frac{1}{{{a^2}}} + \frac{1}{{{a^2} + {h^2}}} = \frac{{2{a^2} + {h^2}}}{{{a^2}\left( {{a^2} + {h^2}} \right)}} \Rightarrow A{K^2} = \frac{{{a^2}\left( {{a^2} + {h^2}} \right)}}{{2{a^2} + {h^2}}}\\ \Rightarrow AK = a.\sqrt {\frac{{{a^2} + {h^2}}}{{2{a^2} + {h^2}}}} \end{array}\)