Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chia khối lẳng trụ đã cho thành hình chóp A’.ABC, C.A’B’C’ và C.A’BB’
Ta có: VA’.ABC = VA’B’C’ = trong đó S là diện tích đáy S = SABC = SA’B’C’ và h là chiều cao của hình lăng trụ
Lại có: VABC.A’B’C’ = S.h
Do đó,
Trong đó, tam giác ABC là tam giác đều có độ dài cạnh bằng a nên
Vì đây là hình lăng trụ đứng nên h = AA’ = BB’= CC’ = a.
Vậy thể tích hình chóp C.A’BB’ là:
Gọi D là trung điểm AB \(\Rightarrow CD\perp AB\)
\(\Rightarrow CD\perp\left(AA'B'B\right)\)
\(\Rightarrow\widehat{CA'D}=30^0\)
\(CD=\dfrac{a\sqrt{3}}{2}\Rightarrow A'D=\dfrac{CD}{tan30^0}=\dfrac{3a}{2}\)
\(\Rightarrow A'A=\sqrt{CD^2-AD^2}=a\sqrt{2}\)
\(V=\dfrac{1}{3}A'A.S_{ABC}=\dfrac{1}{3}.a\sqrt{2}.\dfrac{a^2\sqrt{3}}{4}=\dfrac{a^3\sqrt{6}}{12}\)
Chọn D
Có