K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 5 2017

Đáp án D

6 tháng 7 2019

18 tháng 6 2017

Chọn C


Tam giác ABC vuông và AB=BC=a nên ΔABC chỉ có thể vuông tại B.

Ta có  A B ⊥ B C A B ⊥ B B ' ⇒ A B ⊥ B C B '

Kẻ 

⇒ d = d B ' C ,   M N = d B ' C ,   A M N = d C ,   A M N = d B ,   A M N

Tứ diện BAMN là tứ diện vuông

30 tháng 5 2017

Chọn A.

Để ý rằng hai khối lăng trụ đó có diện tích đáy bằng nhau, tỉ số hai đường cao tương ứng bằng 1/2.

16 tháng 12 2020

a.1/2

okkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

15 tháng 2 2018

Chọn C

24 tháng 1 2022

\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.a.a\sqrt{3}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{ABC}.A'B'C'=AA'.S_{ABC}=2a.\dfrac{a^2\sqrt{3}}{2}=a^3\sqrt{3}\)

Chọn A

NV
30 tháng 6 2021

Do A' cách đều A; B; C \(\Rightarrow\) hình chiếu vuông góc H của A' lên (ABC) trùng tâm của tam giác ABC

\(\Rightarrow\widehat{A'AH}=60^0\)

\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\Rightarrow AA'=\dfrac{AH}{cos60^0}=\dfrac{2a\sqrt{3}}{3}=BB'=CC'=A'B=A'C\) (do A' cách đều A, B, C nên \(A'A=A'B=A'C\))

Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABC\right)\Rightarrow A'H\perp BC\\AH\perp BC\end{matrix}\right.\)  \(\Rightarrow BC\perp\left(A'AH\right)\Rightarrow BC\perp AA'\)

\(\Rightarrow BC\perp BB'\Rightarrow B'C'CB\) là hình chữ nhật (hình bình hành có 1 góc vuông)

\(S_{BCC'B'}=BB'.BC=\dfrac{2a^2\sqrt{3}}{3}\)

Gọi M là trung điểm AB \(\Rightarrow A'M=\sqrt{A'A^2-\left(\dfrac{AB}{2}\right)^2}=\dfrac{a\sqrt[]{39}}{6}\)

\(S_{A'AB}=\dfrac{1}{2}A'M.AB=\dfrac{a^2\sqrt{39}}{12}\)

\(\Rightarrow S_{xq}=S_{BCC'B'}+4S_{A'AB}=...\)