Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Ta có B C / / B ' C ' ⇒ B C / / M B ' C ' ⇒ d B C ; C ' M = d B ; M B ' C ' = d = 3 V B . M B ' C ' S M B ' C '
Lại có V B . M B ' C ' = V M . B B ' C ' = V A ' . B B ' C ' = 1 3 B B ' . S A ' B ' C ' = 4 a 3 3 .
Ta có M B ' = A ' B ' 2 + A ' M 2 = a 13 M C ' = A ' C ' 2 + A ' M 2 = a 10 B ' C ' = A ' B ' 2 + A ' C ' 2 = a 5
Sử dụng công thức Heron S = p p - a p - b p - c . Trong đó a,b,c là độ dài ba cạnh của một tam giác và p = a + b + c 2 . Ta được S M B ' C ' = 7 a 2 2 ⇒ d = 3 . 4 a 3 3 7 a 2 2 = 8 a 7 .
Đáp án A
Gọi E là trung điểm của B B ' ⇒ M E / / B ' C ⇒ A M E / / B ' C
⇒ d A M ; B ' C = d B ' C ; A M E = d C ; A M E
Vì B C ∩ A M E = M , B M = M C ⇒ d C ; A M E = d B ; A M E
Gọi h là khoảng cách từ B đến mặt phẳng (AME).
Do tứ diện BAME có BA, BM, BE đôi một vuông góc nên
1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2
Vậy d A M , B ' C = a 7
Đáp án là A
Gọi E là trung điểm của B B ' . Khi đó B ' C / / A M E ⇒ d A M ; B ' C = d B ' C ; A M E .
Mặt khác d B ; A M E = d C ; A M E . Gọi h = d B ; A M E
Vì tứ diện B A M E có B A ; B M ; B E đôi một vuông góc với nhau.
⇒ 1 h 2 = 1 B A 2 + 1 B M 2 + 1 B E 2 ⇒ 1 h 2 = 1 a 2 + 4 a 2 + 2 a 2 = 7 a 2 ⇒ h = a 7 7 ⇒ d B ' C ; A M = a 7 7 .
Gọi H là hình chiếu của A lên BC
Ta có
Suy ra AH là đoạn vuông góc chung của AA' và BC' nên
Chọn C.
Đáp án B
Trong ABC dựng D sao cho ABCD là hình bình hành.