Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương pháp: Phương pháp tọa độ hóa.
Cách giải:
Cách 1:
Gọi O là trung điểm của BC.
Tam giác ABC là tam giác cân, AB = AC = a, B A C ^ = 120 0
Ta gắn hệ trục tọa độ như hình bên:
Trong đó, O(0;0;0); A(0; a 2 ;0); B' ( a 3 2 ;0;a); I( - a 3 2 ;0; a 2 )
Mặt phẳng (ABC) trùng với mặt phẳng (Oxy) và có VTPT là n 1 → = ( 0 ; 0 ; 1 )
I B ' → = a 3 ; 0 ; a 2 ; I A → = a 3 2 ; a 2 ; - a 2
Mặt phẳng (IB’A) có 1 VTPT n 2 → = 2 3 ; 0 ; 1 ; 3 ; 1 ; - 1 = 1 ; 3 3 ; 2 3
Côsin góc giữa hai mặt phẳng (ABC) và (IB’A) :
cos((ABC);(AB'I)) = |cos( n 1 → ; n 2 → )| =
Cách 2:
Trong (ACC’A’) kéo dài AI cắt AC’tại D.
Trong (A’B’C’) kẻ A’H ⊥ B’D ta có:
=>
Ta dễ dàng chứng minh được C’ là trung điểm của AD’
=>
Xét tam giác A’B’D có
B'D =
=>
Xét tam giác vuông AA'H có :
=>
Đáp án B
Gọi M, N lần lượt là trung điểm của AC và AM.
Khi đó ΔAHM là tam giác đều và NH ⊥ AC .
Đáp án C
Phương pháp: Cách xác định góc giữa hai mặt phẳng:
- Tìm giao tuyến của hai mặt phẳng.
- Góc giữa hai mặt phẳng là góc giữa hai đường thẳng nằm trong hai mặt phẳng và vuông góc với giao tuyến.
Cách giải: Gọi E là giao điểm của B’I và BC.
Hai mặt phẳng (AIB') và (ACB) có giao tuyến là EA
mà A K ⊂ A I B ' ; A H ⊂ A C B ; E A ⊥ A K ; E A ⊥ A H ⇒ hợp bởi hai mặt phẳng (AIB') và (ACB) là KAH
Ta có: B C = 2 a cos 30 ° = a 3
A E 2 = E C 2 + A C 2 − 2 A C . E C . cos A C E = 3 a 2 + a 2 − 2 a . a 3 . cos 150 ° = 7 a 2 ⇒ A E = a 7
Ta có:
cos A E C = A E 2 + E C 2 − A C 2 2 A C . E C = 7 a 2 + 3 a 2 − a 2 2 a 7 . a 3 = 9 2 21
⇒ tan A E C = 1 cos 2 A E C − 1 = 3 9 . ⇒ A H = A E . tan A E C = a 21 9
Ta có: E H E B = H K B B '
⇒ H K = E H . B B ' E B = A E . B B ' 2 B C . cos A E C = a 7 . a .2 21 2 a 3 .9 = 7 a 9
cos K A H = A H A K = A H A H 2 + H K 2 = a 21 9 21 a 2 81 + 49 a 2 81 = 30 10
Gọi
Khi đó
Ta tính được
Ta có
Vậy
Chọn A.
Cách 2. Vì ∆ ABC là hình chiếu của ∆ AB'I trên mp (ABC) nên
Chọn C.
Phương pháp:
Cách giải: Gọi J là giao điểm của B’I và BC. Suy ra AJ là giao tuyến của (AB’I) và (ABC).
Gọi K là hình chiếu của C lên AJ. Suy ra AJ vuông góc với KI.