Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương pháp:
Sử dụng quan hệ song song trong không gian để chứng minh và chọn đáp án đúng.
Cách giải:
Đáp án D
Gọi E là trung điểm của AB, ta có C E / / C ' M
Mặt khác A M / / E B ' do đó C ' M A / / B ' E C
Suy ra C B ' / / A C ' M
Đáp án A
Gọi M là trung điểm của BC thì B C ⊥ A ' A M .
Từ A kẻ A H ⊥ A ' M , H ∈ A ' M . Khi đó A H ⊥ ( A ' B C ) .
Suy ra d A , A ' B C = A H = a 5 2 .
Góc giữa đường thẳng A ' B và mặt phẳng (ABC) bằng góc A ' M A ⏞ .
Theo giả thiết ta có A ' M A ⏞ = 60 °
Đặt AB = 2x thì A M = x 3 ; A ' A = 2 x 3 .
Suy ra A H = A ' A . A M A ' A 2 + A M 2 = 2 x 15 5
Từ giả thiết ta có 2 x 15 5 = a 5 2 ⇒ x = 5 a 15 12 Do đó
A A ' = 5 a 2 ; S A B C = 25 a 2 3 48
Vậy thể tích khối lăng trụ ABC.A'B'C' là V = 125 3 96 a 3 .
Đáp án A.
Ta có A ' B H ^ = A ' B , ( A B C ) = 45 ° ⇒ A ' H = B H = a
Gọi I = A ' B ∩ A B ' ⇒ H I ⊥ A ' B
HI//B'C (tính chất đường trung bình)
⇒ A ' B ⊥ B ' C
Đáp án A.
Gọi K = B ' C ∩ B C ' và I là trung điểm của AB
Do H B ' = A I , H B ' / / A I ⇒ A H B ' I là hình bình hành ⇒ A H / / B ' I
Mặt khác K I / / A C ' nên A H C ' / / B ' C I ⇒ B ' C / / A H C '