Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
ta có
Vậy HBCD là hình chữ nhật và
Tam giác ABC có
Tam giác ACD có
Vậy
Hai mặt phẳng (AB′D′)(AB′D′) và (A′C′D)(A′C′D) có giao tuyến là EFEF như hình vẽ.
Hai tam giácΔA′C′D=ΔD′AB′ΔA′C′D=ΔD′AB′và EFEF là đường trung bình của hai tam giác nên từ A′A′ và D′D′ ta kẻ 2 đoạn vuông góc lên giao tuyến EFEF sẽ là chung một điểm HH như hình vẽ.
Khi đó, góc giữa hai mặt phẳng cần tìm chính là góc giữa hai đường thẳng A′HA′H và D′HD′H.
Tam giác DEFDEF lần lượt cóD′E=D′B′2=√132D′E=D′B′2=132,D′F=D′A2=52D′F=D′A2=52,EF=B′A2=√5EF=B′A2=5.
Theo hê rông ta có:SDEF=√614SDEF=614. Suy raD′H=2SDEFEF=√30510D′H=2SDEFEF=30510.
Tam giác D′A′HD′A′H có:cosˆA′HD′=HA′2+HD′2−A′D′22HA′.HD′=−2961cosA′HD′^=HA′2+HD′2−A′D′22HA′.HD′=−2961.
Do đóˆA′HD′≈118,4∘A′HD′^≈118,4∘hay(ˆA′H,D′H)≈180∘−118,4∘=61,6∘(A′H,D′H^)≈180∘−118,4∘=61,6∘.
là hình chiếu vuông góc của trên .
là hình chiếu vuông góc của trên mặt phẳng .
Do đó với là góc cần tìm.
Ta có .
.
Dùng công thức Hê rông ta có .
Vậy .
ABB'A' và CDD'C' là hình vuông \(\Rightarrow CD'\perp DC'\Rightarrow CD'\perp\left(ADC'B'\right)\)
Gọi M là giao điểm CD' và DC' \(\Rightarrow\) M là trung điểm 2 đoạn nói trên
Trong mp (ADC'B'), từ M kẻ \(MH\perp AC'\Rightarrow MH\) là đường vuông góc chung của AC' và CD'
\(DC'=AB'=\sqrt{AB^2+A'A^2}=a\sqrt{2}\)
\(\Rightarrow AD=B'C'=\sqrt{AC'^2-AB'^2}=a\sqrt{2}\)
\(\Rightarrow\Delta ADC'\) vuông cân tại D \(\Rightarrow\Delta MHC'\) vuông cân tại H
\(\Rightarrow MH=\dfrac{MC'}{\sqrt{2}}=\dfrac{DC'}{2\sqrt{2}}=\dfrac{a}{2}\)
Đáp án A
Chọn gốc tọa độ tại D, các tia Ox, Oy, Oz trùng với các tia DC,DA,DD'.
Và B(1;2;0)
Do đó