K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2017

Bài 2: 

  Đặt   \(a=3+x\)và   \(b=3+y\)thì    \(x,y\ge0\). Ta có :  \(a+b=6+\left(x+y\right)\).

Ta cần chứng minh   \(x+y\ge1\)

Ví dụ   \(x+y< 1\)thì  \(x^2+2xy+y^2< 1\)nên \(x^2+y^2< 1\)

\(\Leftrightarrow a^2+b^2=\left(x+3\right)^2+\left(y+3\right)^2=18+6\left(x+y\right)+\left(x^2+y^2\right)< 18+6+1=25\)

Điều này ngược với  giả thiết ở đề bài   \(ầ^2+b^2\ge25\)

Vậy \(x+y\ge1\)\(\Leftrightarrow a+b\ge7\left(dpcm\right)\)

tk mk nka !!!

1)a) (A + B)2 = ?b) (A + B)3 = ?c) A2 - B2 = ?Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử9x3 + 135x2y + 135xy2 + 5y3 = ?2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z                B = 5xyzKhông đặt phép chia hãy cho biết A có chia hết cho B không?b) Cho C = 13ab2 + abc + 32a            D = 7abKhông đặt phép chia hãy cho biết C có chia hết cho D không?3) Cho \(\Delta ABC\)có AB = AC. M,...
Đọc tiếp

1)

a) (A + B)2 = ?

b) (A + B)3 = ?

c) A2 - B2 = ?

Áp dụng ba hằng đẳng thức trên, hãy phân tích đa thức dưới đây thành nhân tử

9x3 + 135x2y + 135xy2 + 5y3 = ?

2) a) Cho A = 15x2y3z2 - 20x2yz2 + 10xy3z

                B = 5xyz

Không đặt phép chia hãy cho biết A có chia hết cho B không?

b) Cho C = 13ab2 + abc + 32a

            D = 7ab

Không đặt phép chia hãy cho biết C có chia hết cho D không?

3) Cho \(\Delta ABC\)có AB = AC. M, N, P lầm lượt là trung điểm của AB, BC, AC. Hỏi MP là đường gì của\(\Delta ABC\)? và AB = 3cm, tính BC, AC (biết BC là cạnh huyền của\(\Delta ABC\))

(ba câu trên rất dễ, ai làm đúng cả 3 câu sẽ được 3 tick, 2 câu thì 2 tick, 1 câu thì một tick, nếu ai trả lời ngoài phạm vi mik sẽ tick sai)

3
31 tháng 10 2019

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

31 tháng 10 2019

2

a

\(15x^2y^3z^2-20x^2yz^2+10xy^3z\)

\(=5xyz\left(3xy^2z-4xz+2y^2\right)⋮5xyz\)

b

\(13ab^2+abc+32a=a\left(13b^2+bc+32\right)\) 

TH1:\(13b^2+bc+32=7b\cdot P\left(x\right)\) thì A chia hết cho B

TH2:\(13b^2+bc+32=7b\cdot Q\left(x\right)+r\left(r>0\right)\) thì A không chia hết cho B

12 tháng 3 2017

cho tam giác MNP, góc M=90o,đường cao MK 

a, cmr MK2=NK.KP

b, Tính MK,tính diện tích tam giác MNP, biết NK =4cm,KP=9cm

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2 Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là: A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2 ...
Đọc tiếp

I. Trắc nghiệm (3 điểm): Hãy khoanh tròn vào trước các đáp án đúng.

Câu 1: Kết quả của phép nhân: 3x2y.(3xy – x2 + y) là:

A) 3x3y2 – 3x4y – 3x2y2 B) 9x3y2 – 3x4y + 3x2y2

C) 9x2y – 3x5 + 3x4 D) x – 3y + 3x2

Câu 2: Kết quả của phép nhân (x – 2).(x + 2) là:

A) x2 – 4 B) x2 + 4 C) x2 – 2 D) 4 - x2

Câu 3: Giá trị của biểu thức x + 2x + 1 tại x = -1 là:

A) 4 B) -4 C) 0 D) 2

Câu 4: Kết quả khai triển của hằng đẳng thức (x + y)3 là:

A) x2 + 2xy + y2 B) x3 + 3x2y + 3xy2 + y3

C) (x + y).(x2 – xy + y2) D) x3 - 3x2y + 3xy2 - y3

Câu 5: Kết quả của phép chia (20x4y – 25x2y2 – 5x2y) : 5x2y là:

A) 4x2 – 5y + xy B) 4x2 – 5y – 1

C) 4x6y2 – 5x4y3 – x4y2 D) 4x2 + 5y - xy

Câu 6: Đẳng thức nào sau đây là Sai:

A) (x - y)3 = x3 - 3x2y + 3xy2 - y3 B) x3 – y3 = (x - y)(x2 - xy + y2) C) (x - y)2 = x2 - 2xy + y2 D) (x - 1)(x + 1) = x2 - 1

II. Tự luận (7 điểm)

Câu 1 ( 1 điểm): Rút gọn biểu thức P = (x - y)2 + (x + y)2 – 2.(x + y)(x – y) – 4x2

Câu 2 (3 điểm): Phân tích các đa thức sau thành nhân tử:

a/ x3 – x2y + 3x – 3y

b/ x3 – 2x2 – 4xy2 + x

c/ (x + 2)(x+3)(x+4)(x+5) – 8

Câu 3 (2 điểm): Làm tính chia:(x4 – x3 – 3x2 + x + 2) : (x2 – 1)

Câu 4 (1 điểm): Cho x, y là 2 số khác nhau thoả mãn x2 – y = y2 – x. Tính giá trị của biểu thức A = x3 + y3 + 3xy(x2 + y2) + 6x2y2(x + y).

help mekhocroi

2
23 tháng 10 2016

Đại số lớp 8

Vậy (x^4 - x^3 - 3x^2 + x + 2) = (x^2 - x - 1)(x^2 - 1) + 1

23 tháng 10 2016

Đại số lớp 8

Đại số lớp 8

\(P=\left(x-y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)-4x^2=\left(x-y-x-y\right)^2-\left(2x\right)^2=\left(-2y\right)^2-\left(2x\right)^2\)

\(=\left(2y-2x\right)\left(2y+2x\right)=2\left(y-x\right)2\left(y+x\right)=4\left(x+y\right)\left(y-x\right)\)

\(x^3-x^2y+3x-3y=x^2\left(x-y\right)+3\left(x-y\right)=\left(x-y\right)\left(x^2+3\right)\)

\(x^3-2x^2-4xy^2+x=x\left(x^2-2x+1-4y^2\right)=x\left[\left(x-1\right)^2-\left(2y\right)^2\right]=x\left(x+2y-1\right)\left(x-2y-1\right)\)

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-8=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-8\)

Đặt \(x^2+7x+10=t\), ta có:

\(t\left(t+2\right)-8=t^2+2t-8=t^2-2t+4t-8=t\left(t-2\right)+4\left(t-2\right)=\left(t-2\right)\left(t+4\right)\)

\(=\left(x^2+7x+10+4\right)\left(x^2+7x+10-2\right)=\left(x^2+7x+14\right)\left(x^2+7x-8\right)\)

C1: một hình HO chữ nhật có: A. 6mặt, 6cạnh, 12đỉnh B. 6đỉnh, 8mặt, 12đỉnh C. 6mặt, 6cạnh, 12đỉnh D. 6mặt, 8đỉnh, 12đỉnh C2:cho tứ giác ABCD có hai đường chéo AC \(\perp\)BD và AC =4cm, BD = 7cm. diện tích tứ giác ABCD bằng: A. 14cm2 B. 28cm2 C. 22cm2 D. 11cm2 C3:tam giác ABC đồng dạng với tam giác A'B'C' theo tỉ số k thì tam giác A'B'C đồng dạng với tam giác ABC theo...
Đọc tiếp

C1: một hình HO chữ nhật có:

A. 6mặt, 6cạnh, 12đỉnh

B. 6đỉnh, 8mặt, 12đỉnh

C. 6mặt, 6cạnh, 12đỉnh

D. 6mặt, 8đỉnh, 12đỉnh

C2:cho tứ giác ABCD có hai đường chéo AC \(\perp\)BD và AC =4cm, BD = 7cm. diện tích tứ giác ABCD bằng:

A. 14cm2

B. 28cm2

C. 22cm2

D. 11cm2

C3:tam giác ABC đồng dạng với tam giác A'B'C' theo tỉ số k thì tam giác A'B'C đồng dạng với tam giác ABC theo tỉ số:

A. k

B. \(\frac{1}{K}\)

C. k2

D. 1

C4: tam giác ABC có E,F lần lượt là trung điểm của AB,AC. khẳng định nào sau đây là đúng?

A. tam giác ABC đồng dạng với tam giác AEF

B. tam giác ABC đồng dạng với tam giác AEF

C. tam giác ABC đồng dạng với tam giác AEF

D. tam giác AEF đồng dạng với tam giác AEF

C5:cho tam giác ABC đồng dạng với tam giác A'B'C' theo tỉ số \(\frac{3}{5}\). tính tỉ số diện tích của \(\Delta ABC\) và \(\Delta A'B'C'\) là:

A. \(\frac{9}{25}\)

B. \(\frac{5}{3}\)

C. \(\frac{3}{5}\)

D. \(\frac{27}{25}\)

C6: thể tích của hình hộp chữ nhật có kích thước là 3cm, 4cm. 6cm bằng:

A. 84cm2

B. 30cm2

C. 144cm2

D. 72cm2

C7: diện tích toàn phần của một hình lập phương có cạnh 6cm là:

A. 72cm2

B. 96cm2

C. 144cm2

D. 21cm2

C8:cho tam giác ABC có AB=3cm, AC= 2cm, AD là phân giác Â. Tỷ số \(\frac{DB}{DC}\)bằng :

A. \(\frac{2}{3}\)

B. \(\frac{2}{5}\)

C. \(\frac{3}{2}\)

D. \(\frac{3}{5}\)

C9: cho hình thang ABCD(AB//A'B') có đường trung bình EF= 3cm, đường cao AH=4cm. diện tích hình than đó bằng:

A. 24cm2 B.12cm2 C. 7cm2 B. 6cm2

1
7 tháng 6 2020

C7: diện tích toàn phần của một hình lập phương có cạnh 6cm là:

A. 72cm2

B. 96cm2

C. 144cm2

D. 216cm2

7 tháng 6 2020

C1: một hình HO chữ nhật có:

A. 6mặt, 6cạnh, 12đỉnh

B. 6đỉnh, 8mặt, 12cạnh

C.6mặt, 8cạnh, 12đỉnh

D. 6mặt, 8đỉnh, 12cạnh

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

a)

\(a^2+b^2+c^2+d^2+m^2-a(b+c+d+m)\)

\(=\frac{4a^2+4b^2+4c^2+4d^2+4m^2-4a(b+c+d+m)}{4}\)

\(=\frac{(a^2+4b^2-4ab)+(a^2+4c^2-4ac)+(a^2+4d^2-4ad)+(a^2+4m^2-4am)}{4}\)

\(=\frac{(a-2b)^2+(a-2c)^2+(a-2d)^2+(a-2m)^2}{4}\geq 0\) (đpcm)

Dấu "=" xảy ra khi \(a=2b=2c=2d=2m\)

b)

Xét hiệu

\(\frac{1}{x}+\frac{1}{y}-\frac{4}{x+y}=\frac{x+y}{xy}-\frac{4}{x+y}=\frac{(x+y)^2-4xy}{xy(x+y)}\)

\(=\frac{x^2+y^2-2xy}{xy(x+y)}=\frac{(x-y)^2}{xy(x+y)}\geq 0, \forall x,y>0\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}\geq \frac{4}{x+y}\) (đpcm)

Dấu "=" xảy ra khi $x=y$

AH
Akai Haruma
Giáo viên
3 tháng 3 2019

c)

Xét hiệu:

\((a^2+c^2)(b^2+d^2)-(ab+cd)^2\)

\(=(a^2b^2+a^2d^2+c^2b^2+c^2d^2)-(a^2b^2+2abcd+c^2d^2)\)

\(=a^2d^2-2abcd+b^2c^2=(ad-bc)^2\geq 0\)

\(\Rightarrow (a^2+c^2)(b^2+d^2)\geq (ab+cd)^2\) (đpcm)

Dấu "=" xảy ra khi \(ad=bc\)

d)

Xét hiệu:

\(a^2+b^2-(a+b-\frac{1}{2})=a^2+b^2-a-b+\frac{1}{2}\)

\(=(a^2-a+\frac{1}{4})+(b^2-b+\frac{1}{4})\)

\(=(a-\frac{1}{2})^2+(b-\frac{1}{2})^2\geq 0\)

\(\Rightarrow a^2+b^2\geq a+b-\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=\frac{1}{2}\)

29 tháng 7 2021

Bài 209 : đăng tách ra cho mn cùng làm nhé 

a,sửa đề :  \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)

\(=\left(3x+1-3x-5\right)^2=\left(-4\right)^2=16\)

b, \(B=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)\)

\(2B=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{32}+1\right)=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2B=3^{64}-1\Rightarrow B=\frac{3^{64}-1}{2}\)

c, \(C=\left(a+b-c\right)^2+\left(a-b+c\right)^2-2\left(b-c\right)^2\)

\(=2\left(a-b+c\right)^2-2\left(b-c\right)^2=2\left[\left(a-b+c\right)^2-\left(b-c\right)^2\right]\)

\(=2\left(a-b+c-b+c\right)\left(a-b+c+b-c\right)=2a\left(a-2b+2c\right)\)