K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Đáp án D

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+) A đúng do tính chất đường trung bình trong ΔB'AC và tính chất của hình bình hành ACC'A'.

+) B đúng do IK // AC nên bốn điểm I, K, C, A đồng phẳng.

+) C đúng do việc ta phân tích:

   Đề thi Học kì 2 Toán 11 có đáp án (Đề 4)

+) D sai do giá của ba vectơ Đề thi Học kì 2 Toán 11 có đáp án (Đề 4) đều song song hoặc trùng với mặt phẳng (ABCD). Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.

27 tháng 12 2019

Chọn D.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) A đúng, vì:

   - Tam giác B’AC có IK là đường trung bình của tam giác nên 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

   - Tứ giác ACC’A’ là hình bình hành nên 

Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) B đúng, vì 4 điểm I, K, C, A cùng thuộc mp(B’AC).

+) C đúng, vì:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1)

+) D sai do giá của ba vectơ Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 1) đều song song hoặc trùng với mặt phẳng (ABCD). Do đó, theo định nghĩa sự đồng phẳng của các vectơ, ba vectơ trên đồng phẳng.

17 tháng 11 2023

a: Gọi O là giao điểm của AC và BD

Chọn mp(SAC) có chứa AN

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi I là giao điểm của SO với AN

=>I là giao điểm của AN với mp(SBD)

Chọn mp(AMN) có chứa MN

\(B\in AM\subset\left(AMN\right)\)

\(B\in BD\subset\left(SBD\right)\)

Do đó: \(B\in\left(AMN\right)\cap\left(SBD\right)\)

mà \(I\in\left(AMN\right)\cap\left(SBD\right)\)

nên (AMN) giao (SBD)=BI

Gọi K là giao điểm của BI với MN

=>K là giao điểm của MN với mp(SBD)

b: K là giao điểm của BI với MN

=>B,I,K thẳng hàng

d: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC và O là trung điểm của BD

Xét ΔSAC có

O,N lần lượt là trung điểm của CA,CS

=>ON là đường trung bình

=>ON//SA và ON=SA/2

Xét ΔINO và ΔIAS có

\(\widehat{INO}=\widehat{IAS}\)

\(\widehat{NIO}=\widehat{AIS}\)

Do đó: ΔINO đồng dạng với ΔIAS

=>\(\dfrac{IN}{IA}=\dfrac{NO}{AS}=\dfrac{1}{2}\)

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥...
Đọc tiếp

Cho hình thang ABCD có AB // CD và AB = 2a, BC = CD = DA = a. Đường thẳng d vuông góc với mặt phẳng (ABCD) tại A. Gọi S là một điểm duy nhất thay đổi trên d. (P) là một mặt phẳng qua A vuông góc với SB tại I và cắt SC, SD lần lượt tại J, K.

a) Chứng minh tứ giác BCJI, AIJK là các tứ giác nội tiếp.

b) Gọi O là trung điểm của AB, O' là tâm đường tròn ngoại tiếp tứ giác BCJI. Chứng minh rằng OO' ⊥ (SBC).

c) Chứng minh rằng khi S thay đổi trên d thì JK luôn luôn đi qua một điểm cố định.

d) Tìm một điểm cách đều các điểm A, B, C, D, I, J, K và tìm khoảng cách đó.

e) Gọi M là giao điểm của JK và (ABCD). Chứng minh rằng AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC.

f) Khi S thay đổi trên d, các điểm I, J, K lần lượt chạy trên đường nào.

1
27 tháng 3 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nhận xét

Hình thang ABCD có hai cạnh bên và đáy nhỏ bằng nhau và bằng nửa đáy lớn, nên nó là nửa lục giác đều nội tiếp trong đường tròn đường kính AB, tâm O là trung điểm của AB.

Như vậy: ∠(ACB) = ∠(ADB) = 1v.

a) Theo giả thiết, ta có: SA ⊥ (ABCD) ⇒ SA ⊥ BC

BC ⊥ SA & BC ⊥ AC ⇒ BC ⊥ (SAC) ⇒ BC ⊥ SC. (1)

Mặt khác SB ⊥ (P) nên SB ⊥ IJ (⊂ (P)) (2)

Từ (1) và (2) suy ra BCJI là tứ giác nội tiếp trong đường tròn đường kính BJ.

Ta có BC ⊥ (SAC) ⇒ BC ⊥ AJ (⊂ (SAC))

AJ ⊥ BC & AJ ⊥ SB (do SB ⊥ (P)) ⇒ AJ ⊥ (SBC) ⇒ AJ ⊥ JI (⊂ (SBC)) (3)

Lý luận tương tự, ta có:

BD ⊥ AD & BD ⊥ SA ⇒ BD ⊥ (SAD) ⇒ BD ⊥ AK (⊂ (SAD))

AK ⊥ BD & AK ⊥ SB(⊂ (P)) ⇒ AK ⊥ (SBD) ⇒ AK ⊥ KI. (4)

Từ (3) và (4) suy ra AKJI nội tiếp trong đường tròn đường kính AI nằm trong mặt phẳng (P).

b) Ta có ngay O’ là trung điểm BJ

Vì OO’ là đường trung bình của ΔABJ nên OO’ // AJ

Mà AJ ⊥ (SBC) nên OO’ ⊥ (SBC)

c) Ta có (SCD) ∩ (ABCD) = CD.

Gọi M = JK ∩ CD

SA ⊥ (ABCD) ⇒ SA ⊥ AM(⊂ (ABCD)) (5)

SB ⊥ (P) ⇒ SB ⊥ AM (⊂ (P)) (6)

Từ (5) và (6), ta có: AM ⊥ (SAB) ⇒ AM ⊥ AB.

Suy ra AM là tiếp tuyến của đường tròn ngoại tiếp ΔABC tại A. Như vậy AM cố định. Vì M = AM ∩ CD nên M cố định.

d) ΔAIB vuông tại I nên OA = OB = OI

ΔAJB vuông tại J (do AJ ⊥ (SBC)) nên OA = OB = OJ).

ΔAKB vuông tại K (do AK ⊥ (SBD)) nên OA = OB = OK).

Ta có OA = OB = OC = OD = OI = OJ = OK nên O là điểm cách đều các điểm đã cho và OA = AB/2 = a.

e) Theo chứng minh câu c.

f) Khi S thay đổi trên d, ta có I luôn nằm trong mặt phẳng (B, d).

Trong mặt phẳng này I luôn nhìn đoạn AB cố định dưới góc vuông nên tập hợp I là đường tròn ( C 1 ) đường kính AB nằm trong mặt phẳng (B, d).

Tương tự, tập hợp J là đường tròn ( C 2 ) đường kính AC nằm trong mặt phẳng (C, d) và tập hợp K là đường tròn đường kính AD nằm trong mặt phẳng (D, d).

NV
10 tháng 12 2021

a.

Do O là tâm hbh \(\Rightarrow\) O là trung điểm AC

\(\Rightarrow OJ\) là đường trung bình tam giác SAC

\(\Rightarrow OJ||SA\)

Mà \(SA\in\left(SAC\right)\Rightarrow OJ||\left(SAC\right)\)

\(SA\in\left(SAB\right)\Rightarrow OJ||\left(SAB\right)\)

b. O là trung điểm BD, I là trung điểm BC

\(\Rightarrow OI\) là đườngt rung bình tam giác BCD

\(\Rightarrow OI||CD\)

Mà \(CD\in\left(SCD\right)\Rightarrow OI||\left(SCD\right)\)

Tương tự ta có IJ là đường trung bình tam giác SBC \(\Rightarrow IJ||SB\Rightarrow IJ||\left(SBD\right)\)

c. Ta có I là trung điểm BC, O là trung điểm AC

\(\Rightarrow M\) là trọng tâm tam giác ABC

\(\Rightarrow BM=\dfrac{2}{3}BO=\dfrac{2}{3}.\dfrac{1}{2}BD=\dfrac{1}{3}BD\) 

\(\Rightarrow\dfrac{BM}{BD}=\dfrac{1}{3}\)

Theo giả thiết \(SK=\dfrac{1}{2}KD=\dfrac{1}{2}\left(SD-SK\right)\Rightarrow SK=\dfrac{1}{3}SD\)

\(\Rightarrow\dfrac{SK}{SD}=\dfrac{1}{3}=\dfrac{BM}{BD}\Rightarrow KM||SB\) (Talet đảo)

\(\Rightarrow MK||\left(SBC\right)\)

NV
10 tháng 12 2021

undefined

16 tháng 9 2019

Giải bài tập Đại số 11 | Để học tốt Toán 11

a) Tìm giao tuyến của mp(IBC) và mp(KAD).

Ta có:

K ∈ BC ⇒ K ∈ (IBC) ⇒ K ∈ (IBC) ∩ (KAD)

I ∈ AD ⇒ I ∈ (KAD) ⇒ I ∈ (IBC) ∩ (KAD)

Vậy KI = (IBC) ∩ (KAD)

b) Trong mp(ABD) gọi BI ∩ DM = P

⇒ P ∈ (IBC) ∩ (DMN)

Trong mặt phẳng (ACD) gọi CI ∩ DN = Q

⇒ Q ∈ (IBC) ∩ (DMN)

Vậy (IBC) ∩ (DMN) = PQ.

6 tháng 7 2018

Đáp án A

A, B, C không thẳng hàng

⇒ Giao điểm của AB, AC, BC với (P) nằm trên giao tuyến của (ABC) và (P)

3 tháng 2 2017

Chọn B.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 3)

- + Các bộ véctơ ở phương án A, C, D không thể có giá cùng song song với một mặt phẳng.