Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(AH\perp\left(ABCD\right)\Rightarrow\widehat{A'AH}\) là góc giữa AA' và (ABCD) \(\Rightarrow\widehat{A'AH}=60^0\)
\(\Rightarrow AA'=\dfrac{AH}{cos60^0}=a\)
a. Ta có: \(\left\{{}\begin{matrix}A'H\perp\left(ABCD\right)\Rightarrow A'H\perp AD\\AD\perp AB\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABB'A'\right)\)
Mà \(AD\in\left(ADD'A'\right)\Rightarrow\left(ADD'A'\right)\perp\left(ABB'A'\right)\)
b. Kiểm tra lại đề câu này
Hai mặt phẳng (ABCD) và (A'B'C'D') hiển nhiên song song (theo tính chất lăng trụ) nên góc giữa chúng bằng 0. Do đó thấy ngay \(tan\left(\left(ABCD\right);\left(A'B'C'D'\right)\right)=0\)
Có lẽ không ai bắt tính điều này cả.
c.
\(\left(ABCD\right)||\left(A'B'C'D'\right)\Rightarrow d\left(A;\left(A'B'C'D'\right)\right)=d\left(A';\left(ABCD\right)\right)=A'H=a\)
Chọn đáp án B
Gọi O = AC ∩ BD.Từ giả thiết suy ra A'O ⊥ ABCD
Cũng từ giả thiết, suy ra ABC là tam giác đều nên
Đường cao khối hộp
Do \(\left\{{}\begin{matrix}AA'\perp\left(ABCD\right)\Rightarrow AA'\perp AD\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(AA'C\right)\)
Mà \(AD||A'D'\Rightarrow A'D'\perp\left(AA'C\right)\)
Lại có \(AA'||CC'\Rightarrow C'\in\left(AA'C\right)\Rightarrow A'D'\perp AC'\) (1)
\(\left\{{}\begin{matrix}AA'\perp AC\\AA'=AC\end{matrix}\right.\) \(\Rightarrow\) tứ giác AA'C'C là hình vuông
\(\Rightarrow AC'\perp A'C\) (2)
(1);(2) \(\Rightarrow AC'\perp\left(A'D'C\right)\)
Đặt \(x=AA'\)
Ta có: \(\overrightarrow{AB'}=\overrightarrow{AA'}+\overrightarrow{AB}\) ; \(\overrightarrow{BD'}=\overrightarrow{BB'}+\overrightarrow{BD}=\overrightarrow{BB'}+\overrightarrow{BA}+\overrightarrow{BC}=\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\)
\(\Rightarrow\overrightarrow{AB'}.\overrightarrow{BD'}=\left(\overrightarrow{AA'}+\overrightarrow{AB}\right)\left(\overrightarrow{AA'}-\overrightarrow{AB}+\overrightarrow{BC}\right)\)
\(=AA'^2+\overrightarrow{AA'}\left(-\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{AB}.\overrightarrow{AA'}-AB^2+\overrightarrow{AB}.\overrightarrow{BC}\)
\(=x^2-a^2+AB.BC.cos120^0\)
\(=x^2-a^2-\dfrac{a^2}{2}=x^2-\dfrac{3a^2}{2}=0\)
\(\Rightarrow x=\dfrac{a\sqrt{6}}{2}\)
\(V=\dfrac{a\sqrt{6}}{2}.2.\dfrac{a^2\sqrt{3}}{4}=\dfrac{3a^3\sqrt{2}}{4}\)
\(\overrightarrow{AB}+\overrightarrow{BC}=\overrightarrow{AC}\Rightarrow\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}=\overrightarrow{b}-\overrightarrow{a}\)
Theo Talet: \(\dfrac{A'K}{IK}=\dfrac{B'I}{A'D'}=\dfrac{1}{2}\Rightarrow A'K=\dfrac{2}{3}A'I\)
\(\Rightarrow\overrightarrow{A'K}=\dfrac{2}{3}\overrightarrow{A'I}=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\overrightarrow{B'I}\right)=\dfrac{2}{3}\left(\overrightarrow{A'B'}+\dfrac{1}{2}\overrightarrow{B'C'}\right)\)
\(=\dfrac{2}{3}\overrightarrow{AB}+\dfrac{1}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{a}+\dfrac{1}{3}\left(\overrightarrow{b}-\overrightarrow{a}\right)=\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)
\(\Rightarrow\overrightarrow{DK}=\overrightarrow{DD'}+\overrightarrow{D'A'}+\overrightarrow{A'K}=\overrightarrow{AA'}-\overrightarrow{BC}+\overrightarrow{A'K}\)
\(=\overrightarrow{c}-\left(\overrightarrow{b}-\overrightarrow{a}\right)+\dfrac{1}{3}\overrightarrow{a}+\dfrac{1}{3}\overrightarrow{b}\)
\(=\dfrac{4}{3}\overrightarrow{a}-\dfrac{2}{3}\overrightarrow{b}+\overrightarrow{c}\)
Vì đáy ABCD là hình thoi có `AB=BD=a`
=> ABCD là một hình vuông với cạnh là a
Theo pytago: `BD^2 = AB^2 + AD^2`
<=> \(BD^2=a^2+a^2=2a^2\) (Vì AB = a và AD = AA' = a)
=> \(h=\sqrt{2a^2}=a\sqrt{2}\)
Thể tích khối hộp:
\(V=a^2.h=a^2.\left(a\sqrt{2}\right)=a^3\sqrt{2}\)