K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

b1: cho hình hộp ABCDA'B'C'D' có tất cả các mặt đều là hinh fthoi cạnh a. góc BAA'= góc BAD = góc DAA' = 60 độ. tính độ dài AC
b2: cho tứ diện ABCD có CD=1/2 AB. I,J,K lần lượt là trung điểm của BC,AC,BD. biết JK=5/6AB. tính góc giữa CD với ỊJ và AB

13 tháng 8 2016

Hàm số lượng giác, phương trình lượng giácHàm số lượng giác, phương trình lượng giác

13 tháng 8 2016

tam giác ABM vuông cân tại M=>GA=GB mà GA=GD

=>G là tâm đường tròn ngoại tiếp tam giác ABD

góc ABM=45 độ=>góc AGD=90 độ=>pt GD=>G

tham số A:  GA=GD=>A

cos GAB=3/  =>pt AB

31 tháng 3 2017

Giải bài 2 trang 97 sgk Hình học 11 | Để học tốt Toán 11

14 tháng 4 2016

- Tìm ảnh của điểm Q qua phép tịnh tiến theo \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)

Khi đó MN=QQ’ , suy ra MQ=NQ’ . Cho nên PN+MQ=PN+NQ’ ngắn nhất khi P,N,Q’ thẳng hàng .

- Các bước thực hiện :

          +/ Tìm Q’ sao cho : \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)

          +/ Nối PQ’ cắt AD tại điểm N

          +/ Kẻ NM //CD cắt BC tại M . Vậy tìm được M,N thỏa mãn yêu cầu bài toán .

NV
28 tháng 1 2021

Do tất cả các cạnh bằng a nên các mặt bên đều là hình thoi.

Mà \(\widehat{BAA'}=\widehat{BAD}=\widehat{DAA'}=60^0\Rightarrow A'B=A'D=AA'=BD=a\)

\(\Rightarrow\) Hình chiếu vuông góc H của A' lên (ABCD) là tâm tam giác đều ABD 

\(AH=\dfrac{2}{3}.\dfrac{a\sqrt{3}}{2}=\dfrac{a\sqrt{3}}{3}\) ; \(AC=a\sqrt{3}\)

\(cos\widehat{A'AC}=\dfrac{AH}{AA'}=\dfrac{\sqrt{3}}{3}\Rightarrow cos\widehat{ACC'}=-\dfrac{\sqrt{3}}{3}\)

Áp dụng định lý hàm cos cho tam giác ACC':

\(AC'=\sqrt{AC^2+C'C^2-2AC.C'C.cos\widehat{ACC'}}=a\sqrt{6}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\Delta ABC\) vuông cân tại \(B \Rightarrow AC = \sqrt {A{B^2} + B{C^2}}  = a\sqrt 2 \)

\(CC' = AA' = 2a\)

\(CC' \bot \left( {ABCD} \right) \Rightarrow CC' \bot AC\)

\( \Rightarrow \Delta ACC'\) vuông tại \(C \Rightarrow AC' = \sqrt {A{C^2} + CC{'^2}}  = a\sqrt 6 \)

b) \({S_{ABC{\rm{D}}}} = {S_{A'B'C'C'}} = \frac{1}{2}\left( {A{\rm{D}} + BC} \right).AB = \frac{{3{a^2}}}{2}\)

Gọi \(M\) là trung điểm của \(AD\)

\( \Rightarrow ABCM\) là hình vuông\( \Rightarrow MC = M{\rm{D}} = MA = \frac{1}{2}A{\rm{D}} = a\)

\(\Delta MC{\rm{D}}\) vuông cân tại \(M \Rightarrow C{\rm{D}} = \sqrt {C{M^2} + D{M^2}}  = a\sqrt 2 \)

\(\begin{array}{l}{S_{ABB'A'}} = AB.AA' = 2{a^2}\\{S_{ADD'A'}} = AD.AA' = 4{a^2}\\{S_{BCC'B'}} = BC.CC' = 2{a^2}\\{S_{C{\rm{DD}}'{\rm{C}}'}} = C{\rm{D}}.CC' = 2{a^2}\sqrt 2 \end{array}\)

Tổng diện tích các mặt của hình lăng trụ là:

\(\begin{array}{l}S = {S_{ABC{\rm{D}}}} + {S_{A'B'C'C'}} + {S_{ABB'A'}} + {S_{ADD'A'}} + {S_{BCC'B'}} + {S_{C{\rm{DD}}'{\rm{C}}'}}\\ &  = \frac{{3{a^2}}}{2} + \frac{{3{a^2}}}{2} + 2{a^2} + 4{a^2} + 2{a^2} + 2{a^2}\sqrt 2  = \left( {11 + 2\sqrt 2 } \right){a^2}\end{array}\)

1 tháng 1 2018

Chọn đáp án D

NV
23 tháng 4 2022

a.

Do \(AB=AC\Rightarrow\Delta ABC\) cân tại A

\(\Rightarrow AM\) là trung tuyến đồng thời là đường cao

\(\Rightarrow AM\perp BC\) (1)

Mà \(\left\{{}\begin{matrix}AD\perp AB\left(gt\right)\\AD\perp AC\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AD\perp\left(ABC\right)\Rightarrow AD\perp BC\) (2)

(1);(2) \(\Rightarrow BC\perp\left(ADM\right)\)

b.

Từ A kẻ \(AE\perp DM\) (E thuộc DM)

Do \(BC\perp\left(ADM\right)\Rightarrow BC\perp AE\)

\(\Rightarrow AE\perp\left(BCD\right)\Rightarrow AE=d\left(A;\left(BCD\right)\right)\)

\(BC=\sqrt{AB^2+AC^2}=5\sqrt{2}\Rightarrow AM=\dfrac{1}{2}BC=\dfrac{5\sqrt{2}}{2}\)

Hệ thức lượng trong tam giác vuông ADM:

\(AE=\dfrac{AD.AM}{\sqrt{AD^2+AM^2}}=\dfrac{5\sqrt{3}}{3}\)

c.

Do \(AD\perp\left(ABC\right)\) theo cmt \(\Rightarrow AM\) là hình chiếu vuông góc của DM lên (ABC)

\(\Rightarrow\widehat{DMA}\) là góc giữa DM và (ABC)

\(tan\widehat{DMA}=\dfrac{AD}{AM}=\sqrt{2}\Rightarrow\widehat{DMA}\approx54^044'\)

NV
23 tháng 4 2022

undefined

18 tháng 12 2021

Viết lại đề đi.