Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải:
Vì B là trung điểm của AM nên A, B, M thẳng hàng
Vì C là trung điểm của DN nên D; C; N thẳng hàng.
AB // DC (gt)
⇒ AM // DN (1)
AM = AB x 2 (gt)
DN = DC x 2
AB = DC
⇒ AM = DN (2)
Kết hợp (1) và (2) ta có:
AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.
Gọi G là giao điểm của AN và DM
AMDN là hình bình hành (cmt)
nên G là trung điểm của AN và DM
AB = BM (gt)
DC = AB (gt)
⇒ BM = DC (tính chất bác cầu) (3)
BM // DC (vì AMND là hình bình hành) (4)
Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)
Gọi K là giao điểm của BC và DM
Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
G là trung điểm của DM (cmt)
K là trung điểm của DM (cmt)
Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)

(Hình Tự vẽ)
Vì tam giác ABC có \(\widehat{A}=90\)
Mà AE là đường trung tuyến ( Vì E là trung điểm BC )
nên AE là đường trung tuyến ứng với cạnh huyễn
Suy ra \(AE=\frac{BC}{2}\)
hay AE = BE=EC (1)
Mà AE=ED (2)
Từ (1), và (2) suy ra AE=EB=EC=ED
Vì tứ giác ABDC có các đường chéo cắt nhau tại trung điểm mỗi đường và chúng đều bằng nhau
nên ABCD là hình chữ nhật
b, Vì EB=EC;FB=FK
nên EF là đường trung bình tam giác KBC
Suy ra EF//AC (1)
và EF=KC/2=AK=AC(2)
Từ (1) và (2) suy ra EF//AC VÀ EF=AC
Vậy ACEF là hình bình hành

1: Xét tứ giác DBEC có
BE//DC
BE=DC
Do đó: DBEC là hình bình hành

Sửa đề: BC=2AB
a: \(BE=EC=\dfrac{BC}{2}\)
\(AF=FD=\dfrac{AD}{2}\)
mà BC=AD
nên BE=EC=AF=FD
Xét tứ giác ABEF có
BE//AF
BE=AF
Do đó: ABEF là hình bình hành
mà BE=BA(=1/2BC)
nên ABEF là hình thoi
b: Xét ΔIFA có
FB là đường trung tuyến
\(FB=\dfrac{IA}{2}\)
Do đó: ΔIFA vuông tại F
=>IF\(\perp\) AD
mà AD//BC
nên \(IF\perp BC\)
c: Xét tứ giác BICD có
BI//CD
BI=CD
Do đó: BICD là hình bình hành
=>BC cắt ID tại trung điểm của mỗi đường
mà E là trung điểm của BC
nên E là trung điểm của ID
=>I,E,D thẳng hàng

Giải:
Vì B là trung điểm của AM nên A, B, M thẳng hàng
Vì C là trung điểm của DN nên D; C; N thẳng hàng.
AB // DC (gt)
⇒ AM // DN (1)
AM = AB x 2 (gt)
DN = DC x 2
AB = DC
⇒ AM = DN (2)
Kết hợp (1) và (2) ta có:
AMND là hình bình hành (tứ giác có một cặp đối diện song song và bằng nhau thì tứ giác đó là hình bình hành.
Gọi G là giao điểm của AN và DM
AMDN là hình bình hành (cmt)
nên G là trung điểm của AN và DM
AB = BM (gt)
DC = AB (gt)
⇒ BM = DC (tính chất bác cầu) (3)
BM // DC (vì AMND là hình bình hành) (4)
Kết hợp (3) và (4) ta có: BMCD là hình bình hành (tứ giác có một cặp cạnh đối diện song song và bằng nhau thì đó là hình bình hành)
Gọi K là giao điểm của BC và DM
Thì K là trung điểm của BC và trung điểm của DM (hình bình hành có hai đường chéo cắt nhau tại trung điểm của mỗi đường)
G là trung điểm của DM (cmt)
K là trung điểm của DM (cmt)
Vậy K \(\equiv\) G; Hay trung điểm của ba đường thẳng AN; DM; BC trùng nhau(đpcm)