Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là HBH => AD = BC (1)
CM = 1/2 BC ( M là tđ) (2)
AN = 1/2 AD ( N là tđ) (3)
Tuwf (1) (2) vaf (3) => AN = CM
tg AMCN cos AN =CM
AN // CM( AD // BC)
=> AMCN là HBH
b, HT ABCD có AN = ND
BM = MC
=> MN là đg tb => MN // AB // BC (4)
ABCD là HBH => OB = OD ; OA = OC ( tính chất HBH)
Tam giác AOD có AN = ND
OB = OD
=> ON là đg tb => ON //AB (5)
CMTT T OM //DC (6)
Từ(4) (5) và (6) => N , O , M thẳng hàng
Tham khảo bài này nha!
Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?
Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
hay ta có OK đi qua trung điểm của AB và CD.
: Tứ giác ABCD là hình thang nên:AB//CD.
Gọi M, N lần lượt là giao điểm của KO với AB,CD.
Áp dụng định lý talet ta có:
AM/DN=MB/NC(=KM/KN)
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC.
=AO/OC=AM/NC.
Vậy AM/DN=AM/NC hay DN=NC.
tương tự MB=MA.
ta có OK đi qua trung điểm của AB và CD.