K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2020

Kiểm tra lại đề nhé!

22 tháng 7 2015

Vì ABCD là HBH => AD = BC (1) 

 CM = 1/2 BC ( M là tđ) (2)

AN = 1/2 AD ( N là tđ)  (3)

Tuwf (1) (2) vaf (3) => AN = CM  

tg AMCN cos AN =CM 

                     AN // CM( AD // BC) 

=> AMCN là  HBH 

b, HT ABCD có AN = ND 

                       BM = MC 

=> MN là đg tb => MN // AB // BC (4) 

ABCD là HBH => OB = OD ; OA = OC ( tính chất HBH) 

Tam giác AOD có AN = ND 

                     OB = OD 

=> ON là đg tb => ON //AB (5)

CMTT T OM //DC (6)

Từ(4) (5) và (6) => N , O , M thẳng hàng 

20 tháng 1 2018

Tham khảo bài này nha!

Hình thang ABCD (AB//CD) có AC va BD cắt nhau tại O , AD và BC cắt nhau tại K . Chứng minh rằng OK đi qua trun?

 Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
hay ta có OK đi qua trung điểm của AB và CD.

20 tháng 1 2018

:  Tứ giác ABCD là hình thang nên:AB//CD. 
Gọi M, N lần lượt là giao điểm của KO với AB,CD. 
Áp dụng định lý talet ta có: 
AM/DN=MB/NC(=KM/KN) 
=(AM+MB)/(CN+ND) (t/c dãy tỉ số bằng nhau) =AB/DC. 
=AO/OC=AM/NC. 
Vậy AM/DN=AM/NC hay DN=NC. 
tương tự MB=MA. 
 ta có OK đi qua trung điểm của AB và CD.