Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình bình hành -> AB = CD -> AE = FC
Tứ giác AEFC có AE song song FC, AE = FC
-> AEFC là hình bình hành
mà O là giao của 2 đường chéo
-> O là trung điểm của AC
mà ABCD là hình bình hành
-> O là trung điểm của BD hay B,O,D thẳng hàng
Theo hình xét tam giác AOE và tam giác COF ta có:
góc OFC = góc AEO (vì góc đối nhau của 2 cạnh song song)
góc EAO = góc OCF (vì góc đối nhau của 2 cạnh song song)
cạnh AE = canh FC (theo giả thuyết)
=> tam giác AOE = tam giác COF
=> AO = OC => O là trung điểm cạnh AC => O cũng là trung điểm của cạnh BD (tính chất đường chéo hình bình hành)
=> BOD thẳng hàng (Điều phải chứng minh)
Bạn có thể giải tính toán học khó (ma trận, hàm bậc cao nhiều ẩn, ...) ở https://hotavn.ga/horobot/horobotmath.php
(((Làm theo hướng đó đúng rồi.. Tiếp nà )))
HFCE là hình bình hành (tự c/m)
=> \(\hept{\begin{cases}HF\text{//}EC\\HF=EC\left(1\right)\end{cases}}\)
Mà EC//AK => HF//AK
=> Δ ANK = Δ FNH (g.c.g)
=> AK=HF (2)
Từ (1) và (2) suy ra AK=EC. Mà AK//EC
=> Tứ giác AKCE là hình bình hành có O là trung điểm của AC
=> O cũng là trung điểm của EK
=> Đpcm...
Ta thấy : 4 điểm A ; F ; C ; E cùng thuộc đường tròn đường kính AC .
Vì trung trực của EF cắt AC tại O nên O là trung điểm AC .
Ta có : OM , AH cùng vuông góc với EF nên OM // AH
=> M là trung điểm CH ( Vì O là trung điểm của AC )
Do đó , tứ giác CFHE có tâm đối xứng M hay CFHE là hình bình hành .
Suy ra : HF // CE // AK
Dễ chứng minh △HNF = △KNA ( g.c.g )
Suy ra : Tứ giác AHFK là hình bình hành .
Vậy : AK = HF = CE , kết hợp với AK // CE , AK vuông góc với AE .
Suy ra : CKAE là hình chữ nhật .
Vì O là trung điểm đường chéo AC nên O là tâm của hình chữ nhật CKAE hay K , O , E thẳng hàng ( đpcm )
Thử nhé: Gọi O' là trung điểm của AC.
Tam giác vuông AEC và AFC có trung tuyến lần lượt là EO' và FO' nên O'E=O'F (=1/2AC).
Suy ra: O'EF là tam giác cân. Mà O'M là đường trung tuyến của tam giác O'EF.
nên O'M là đường trung trực của EF.
Vậy O và O' đều là giao điểm của đường trung trực của EF với AC nên O trùng O'. Suy ra O là trung điểm của AC.
Xét tam giác ACH có OA=OC và OM song song AH nên CM=HM.
Xét tứ giác CEHF có 2 đường chéo cắt nhau tại trung điểm mỗi đường nên là hbh. Đến đay làm sao?
a: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Xét tứ giác AEFD có
AE//FD
AE=FD
Do đó: AEFD là hình bình hành
Xét tứ giác BEFC có
BE//FC
BE=FC
Do đó: BEFC là hình bình hành
Xét tứ giác BEDF có
BE//DF
BE=DF
Do đó: BEDF là hình bình hành
b: Ta có:ABCD là hình bình hành
nên AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
Ta có: BEDF là hình bình hành
nên BD cắt EF tại trung điểm của mỗi đường
mà O là trung điểm của BD
nên O là trung điểm của FE
hay F,O,E thẳng hàng
A B C D E F O
có E; F là trung điểm của AB;CD (Gt) => EF là đtb của hình bình hành ABCD => EF // BC // AD
xét tam giácABC có E là trung điểm của BC và EO // BC
=> O là trung điểm của AC
mà ABCD là hình bình hành nên AC cắt BD tại trung điểm của mỗi đường
=> O là trung điểm của BD
=> B;O;D thẳng hàng
ta có AB=CD (hbh ABCD)
mà AE=1/2 AB ; CF= 1/2 CD
=> AE=CF
mà AE // CF (AB//CD)
=> AECF là hình bình hành
có AECF là hình bình hành ; AC và EF cắt nhau tại O
=> O là trug điểm của EF và AC
có ABCD là hình bình hành, O là trung điểm của đường chéo AC (cmt)
=> O là trung điểm của đường chéo BD
=> B, O, D thẳng hàng