Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì hình thang ABCD cân
AD = BC;
Ĉ = D̂
Xét hai tam giác vuông AED và BFC có:
AD = BC
Ĉ = D̂
⇒ ΔAED = ΔBFC (cạnh huyền – góc nhọn)
⇒ DE = CF.
a) Xét ∆CDE và ∆CBF có :
CD = CB (Vì ABCD là hình vuông)
ˆCDE=ˆCBFCDE^=CBF^(=90o=90o)
DE = BF (gt)
⇒⇒∆CDE = ∆CBF (c.g.c)
⇒⇒CE = CF (tương ứng) và ˆDCE=ˆBCFDCE^=BCF^ (tương ứng)
Ta có : ˆDCE+ˆECB=90oDCE^+ECB^=90o
⇒ˆBCF+ˆECB=90o⇒BCF^+ECB^=90o
⇒ˆECF=90o⇒ECF^=90o
Xét ∆ECF có :
EC = FC (cmt)
ˆECF=90oECF^=90o(cmt)
Suy ra ∆ECF vuông cân tại C
b) Gọi O là giao điểm của AC và BC
⇒O⇒Olà trung điểm AC
Gọi M’ là trung điểm EF
Xét ∆AEF vuông tại A có:
AM’ là trung tuyến ứng với cạnh huyền EF
⇒⇒ AM′=EF2AM′=EF2
Xét ∆ECF vuông tại C có:
CM’ là trung tuyến ứng với cạnh huyền EF
⇒CM′=EF2⇒CM′=EF2
⇒⇒CM’ = AM’
⇒⇒∆AM’C là tam giác cân tại M’
⇒⇒ M’O là đường cao đồng thời là trung tuyến
⇒M′O⊥AC⇒M′O⊥AC
Mà BD ⊥ AC (tính chất đường chéo hình vuông)
⇒⇒M’ ∈ BD
Mà M’ ∈ EF
⇒⇒M’ là giao điểm EF, BC⇒M′≡M⇒M′≡M
Suy ra M là trung điểm EF
a) Các đường thẳng vuông góc với BF là: AB, BC, CD, DA, AC, EF, FG, GH, HE và FH.
b) (ABCD) và (BCGF), (CDHG) và (EFGH), (ADHE) và (ABCD)
Lưu ý: HS có thể liệt kê tên các cặp mặt phẳng khác.
cậu tự vẽ hình nhé
ta có ABCD là hình bình hành => AB=CD =>BE=DF
và ta có AB//CD => BE//DF
=> EBCF là hình bình hành => DE=BF(ĐPCM)
ABCD là hình bình hành nên AB =CD (cạnh đối của hình bình hành) (1)
F là trung điểm của BC (theo đầu bài) nên BF = 1/2 BC (2).
E là trung điểm của AD (theo đầu bài) nên ED = 1/2 AD (3).
Từ (1), (2) và (3) suy ra BF = ED (4).
BF // ED (vì F nằm trên AB, E nằm trên AD; BC và AD là cạnh đối của hình bình hành ABCD nên BC//AD) (5).
Từ (4) và (5) suy ra BFDE là hình bình hành (2 cạnh đối song song và bằng nhau) =>BE = DF (điều phải chứng minh)
Xét ∆ EDC và ∆ FDA, tacó: ∠ (EDC) = ∠ (FDA) = 15 0
DC = AD (gt)
∠ (ECD) = ∠ (FAD) = 15 0
Suy ra: ∆ EDC = ∆ FDA (g.c.g)
⇒ DE = DF
⇒ ∆ DEF cân tại D
Lại có: ∠ (ADC) = ∠ (FDA) + ∠ (FDE) + ∠ (EDC)
⇒ ∠ (FDE) = ∠ (ADC) -( ∠ (FDA) + ∠ (EDC) )= 90 0 - ( 15 0 + 15 0 ) = 60 0
Vậy ∆ DEF đều.
bài toán tuần à
Hình vẽ nào có thấy hình đâu