Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Hình : Tự vẽ
a) Ta có : AM = MD (gt)
HM = MC (gt)
Nên : ACDH là hình bình hành
=> AH = CD (đpcm)
b) Cho HD cắt AB tại E
Do : ACDH là hình bình hành (cmt)
Nên : AC // HD (=) AC // ED
Mà : \(\widehat{EAC}=90^o\)
=> \(\widehat{AED}=180^o-\widehat{EAC}=180^o-90^o=90^o\)
Do đó : DH \(\perp\)AB (đpcm)
c) Ta có : \(\widehat{EHA}=\widehat{CDE}\)(đồng vị)
Xét \(\Delta EAH\)và \(\Delta CHD\), ta có :
\(\widehat{AEH}=\widehat{HCD}=90^o\)
\(\widehat{EHA}=\widehat{CDH}\)(cmt)
Nên : \(\Delta EAH\)đồng dạng với \(\Delta CHD\)(g - g)
=> \(\widehat{BAH}=\widehat{DHC}\)
Bạn tự vẽ hình nha
a) Vì AB = AC
\(\Rightarrow\) \(\Delta ABC\) cân tại A
\(\Rightarrow\) \(\widehat{B}=\widehat{C}\) (Hai góc kề một đáy)
Xét hai tam giác vuông \(\Delta BMH\) và \(\Delta CMK\) , ta có:
\(\widehat{B}=\widehat{C}\) ( Chứng minh trên)
\(MB=MC\) (M là trung điểm của BC)
\(\Rightarrow\Delta BMH=\Delta CMK\) (cạnh huyền góc nhọn)
b) Tự làm
Sửa đề: M nằm trên tia phân giác của góc xOy
Xét ΔOAM vuông tại A và ΔOBM vuông tại B có
OM chung
góc AOM=góc BOM
=>ΔOAM=ΔOBM
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>O,C,P thẳng hàng và OP vuông góc với AB tại P
=>CP là trung trực của ΔCAB
Bài 1:
Xét ΔMKQ có
A là trung điểm của KM
B là trung điểm của KQ
Do đó: AB là đường trung bình của ΔMKQ
Suy ra: AB//MQ