K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2016

A B C D E F I M N

Do AE = CF nên AEFD và CFEB là hai hình thang vuông bằng nhau. Vậy thì \(S_{CFAB}=\frac{S_{ABCD}}{2}\Rightarrow S_{EMB}+S_{MNCB}+S_{NFC}=\frac{S_{ABCD}}{2}\)

Lại có \(S_{IBC}=\frac{S_{ABCD}}{2}\Rightarrow S_{IMN}+S_{NMCB}=\frac{S_{ABCD}}{2}\)

Vậy thì \(S_{IMN}=S_{MEB}+S_{NFC}\)

24 tháng 11 2016

em cảm ơn ạ 

27 tháng 10 2023

ΔADC vuông tại D

=>\(AC^2=AD^2+DC^2\)

=>\(AC^2=8^2+6^2=100\)

=>AC=10(cm)

ABCD là hình chữ nhật

=>AC cắt BD tại trung điểm của mỗi đường và AC=BD

=>M là trung điểm chung của AC và BD và AC=BD

=>MD=MB=MA=MC=AC/2=5(cm)

Xét ΔDME vuông tại M và ΔDCB vuông tại C có

\(\widehat{MDE}\) chung

Do đó: ΔDME đồng dạng với ΔDCB

=>\(\dfrac{ME}{CB}=\dfrac{DM}{DC}\)

=>\(\dfrac{ME}{6}=\dfrac{5}{8}\)

=>\(ME=3,75\left(cm\right)\)

NV
12 tháng 1

a.

DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)

\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)

Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN

\(\Rightarrow\) Tứ giác BENC nội tiếp

\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)

\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)

\(\Rightarrow NE\perp BM\) tại E

b.

Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)

\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)

\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)

\(\Rightarrow I\) là trực tâm của tam giác BMN

\(\Rightarrow BI\perp MN\)

NV
12 tháng 1

c.

Gọi H là giao điểm BI và MN

Do E và F cùng nhìn MN dưới 1 góc vuông 

\(\Rightarrow\) Tứ giác EFMN nội tiếp

\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)

Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)

\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)

Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)

\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)

\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)

\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)

\(\Rightarrow AM=HM\)

Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)

Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)

\(\Rightarrow AM+CN=MH+NH=MN\)

\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)

Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)

\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)

\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)

\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)

Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)