Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này có gì đâu em ! Anh làm nhé !
Chuyển vế cái cần chứng minh ta được
1/AB^2 - 1/AE^2 =1/4AF^2
hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2
hay BE^2/ 4BC^2.AE^2 = 1/AF^2
Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE
vẽ tam đều AMO , O nằm trong tam giác AMB, từ O kẻ OK vuông góc AB c/m tam giác AOK=tam giác AMD =>AD=AK=AB/2=> tam giác AOB cân =>OK là tia phân giác của AOB=> AOB=150 độ =>DOC=360-60-150=150 độ => tam giác AOB=tam giác DOC => AB=Bm =. tam giác ABM cân
Hay qua! Nhưng chỉ có:
Tam giác AOB = tam giác MOB (Góc MOB = góc AOB = 150 độ, OB chung, OM=MB (tam giác đều)). => AB = AM => tam giác ABM cân tại B.
a) Do ABCD là hình chữ nhật \(\Rightarrow AD//BC\)
\(\Rightarrow\widehat{CBD}=\widehat{ADB}\) ( so le trong )
Xét tam giác AED và tam giác DCB có :
\(\widehat{CBD}=\widehat{ADB}\)
\(\widehat{AED}=\widehat{BCD}\left(=90^o\right)\)
\(\Rightarrow\) tam giác AED đồng dạng với tam giác DCB ( g - g ) ( đpcm )
b) \(\Rightarrow\frac{AD}{DB}=\frac{ED}{BC}\)
Mà AD = BC ( do ABCD là hình chữ nhật )
\(\Rightarrow\frac{AD}{DB}=\frac{DE}{AD}\)
\(\Leftrightarrow AD^2=DE\times DB\) ( đpcm )