Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S_{ABCD}=AB.BC\)
\(S_{BFEC}=\frac{\left(BF+EC\right).BC}{2}\)
Theo đề bài
\(\frac{S_{ABCD}}{3}=S_{BFEC}\Rightarrow\frac{AB.AC}{3}=\frac{\left(BF+EC\right)BC}{2}\Rightarrow\frac{AB}{3}=\frac{BF+EC}{2}=\frac{48}{3}=16\)
\(\Rightarrow BF=2.16-EC=32-EC\)
Mà \(EC=\frac{CD}{2}=\frac{AB}{2}=\frac{48}{2}=24\)
\(\Rightarrow BF=32-24=8\)
- S
BFEC=S1=\(\frac{1}{2}\)(FB+EC).BC - S
ABCD=S2= AB.BC - \(\frac{S1}{S2}\)=\(\frac{BF+EC}{2AB}\)=\(\frac{1}{3}\)\(\Rightarrow\)BF=\(\frac{2AB}{3}\)- EC= \(\frac{2.48}{3}\)-24=8
Xem cách vẽ ở hình 211. Ta vẽ được vô số hình bình hành ABEF như vậy
Vẽ cung tròn tâm B bán kính 5cm cắt CD tại 2 điểm E và E'.
Nối BE, từ A kẻ đường thẳng song song với BE cắt CD tại F.
Nối BE', từ A kẻ đường thẳng song song với BE' cắt CD tại F'.
Ta có hình bình hành ABEF và hình bình hành ABE'F' có cạnh AB = 5cm, BE = 5cm, BE' = 5cm có diện tích bằng điện tích hình chữ nhật ABCD.
Có thể vẽ được hai hình như vậy.
Vẽ cung tròn tâm B bán kính 5cm cắt Đường thẳng CD tại hai điểm E và E’ (vì ta có BA > BC)
Nối BE, từ A kẻ đường thẳng song song với BE cắt đường thẳng CD tại F
Nối BE’, từ A kẻ đường thẳng song song với BE’ cắt đường thẳng CD tại F’
Ta có hình bình hành ABEF và hình bình hành ABE’F’ có cạnh AB = 5cm, BE = 5cm, BE’ = 5cm có diện tích bằng diện tích hình chữ nhật ABCD. Vẽ được hai hình.
Trên cạnh CD ta lấy 1 điểm E bất kỳ (E khác C và D). Nối BE. Từ A kẻ đường thẳng song song với BE cắt đường thẳng CD tại F.
Tứ giác ABEF có các cạnh đối song song với nhau nên ABEF là hình bình hành
S A B E F = AD.EF = AD. AB ( AB = EF vì ABEF là hình bình hành)
Diện tích hình chữ nhật: S A B C D = AB.AD
⇒ S A B C D = S A B E F
Có thể vẽ được vô số hình như vậy.