Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a mình khỏi nói ha. Nó quá hiển nhiên rồi.
(Lớp 8 giờ này học tam giác đồng dạng chưa ta???)
Câu b: Mấu chốt ở đây là chứng minh tam giác \(BMQ\) và \(BHC\) đồng dạng.
Trước đó chứng minh tam giác \(BMH\) và \(BQC\) đồng dạng cái đã.
Do tam giác \(BAH\) và \(BDC\) đồng dạng (tự CM) nên khi vẽ 2 đường trung tuyến của các tam giác này sẽ sinh ra 2 tam giác đồng dạng khác là \(BMH\) và \(BQC\)(dễ dàng CM nhờ vào tỉ lệ cạnh).
Nên \(\frac{BM}{BQ}=\frac{BH}{BC}\Rightarrow\frac{BM}{BH}=\frac{BQ}{BC}\).
Ta còn có \(\widehat{MBH}=\widehat{QBC}\Rightarrow\widehat{MBQ}=\widehat{HBC}\).
Ta đã đủ yếu tố c-g-c để CM 2 tam giác \(BMQ\) và \(BHC\) đồng dạng rồi. Từ đó suy ra đpcm.
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//KC và MN=KC
=>NCKM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MK
hay góc BMK=90 độ
Gọi N là trung điểm của BH
=> MN là đường trung ình của tam giác ABH
=>MN//AB, MN=1/2 AB
Mà AB=CD và AB//CD
=>MN//CD, MN = 1/2 CD
=> MNCK là hình bình hành
=> NC//MK (1)
Ta có: MN //AB
AB vuông góc với BC
=> MN vuông góc với BC tại E (E thuộc BC)
Tam giác BCM có BH và ME là đường cao và chúng cắt nhau tại N
=> CN vuông góc với BM (2)
Từ (1) và (2) suy ra:
BM vuông góc với MK (đpcm)
Từ K, D hạ đường vuông góc KN, DP xuống AC
Xét tam giác BMK, ta có:
BK^2=BC^2+CK^2 = BC^2+CD^2/4 (1)
BM^2=BH^2+MH^2 = BH^2+ AH^2/4 (2)
MK^2=MN^2+NK^2=MN^2+BH^2/4 (3)
Ta có MN= MH-NH = AH/2-NH=AH/2-(CN-CH)=AH/2-AH/2+CH =CH (Do CN=CP/2=AH/2)
=>MN =CH, thay vào (3)
=> MK^2 = CH^2 +BH^2/4 (4)
Để c/m ^BMK=90o, ta c/m BK^2 =BM^2 +MK^2 (*)
Thay (1), (2), (4) vào (*), , ta được
BC^2+CD^2/4= BH^2+AH^2/4+CH^2+BH^2/4 (**)
Do BC^2= BH^2+CH^2
(**) => CD^2/4= AH^2/4+BH^2/4
=> CD^2=AH^2+BH^2
=> AB^2 = AH^2+BH^2 , đúng do tam giác AHB vuông tại H
Vậy ^BMK =90o
hay BMvuông góc vớ Mk
Gọi N là trung điểm BH =>MN đường trung bình của tam giác ABH
Ta có MN//AB và MN = \(\frac{1}{2}AB\)
Mà CK//AB và CK=\(\frac{1}{2}CD=\frac{1}{2}AB\) => CK=MN
=>MNCK là hình bình hành
=> CK//MK (1)
Vì MN//AB, AB vuông góc BC nên MN vuông góc BC.
Suy ra N là trực tâm tam giác BCM CN vuông góc với BM (2)
Từ (1) và (2) suy ra MK vuông góc với BM
Gọi K là trung điểm của HB
Xét ΔHAB có HM/HA=HK/HB
nên MK//AB và MK=AB/2=CD/2=CQ
=>MK vuông góc với BC
Xét tứ giác MKCQ có
MK//CQ
MK=CQ
Do đó; MKCQ là hình bình hành
=>QM//CK
Xét ΔBMC có
MK.BH là các đường cao
MK cắt BH tại K
Do đó; K là trực tâm
=>CK vuông góc với BM
=>BM vuông góc QM