Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta cần chứng minh \(\overrightarrow{MN}.\overrightarrow{AM}=0\)
Đặt \(\frac{BM}{MH}=\frac{CN}{ND}=k\), khi đó \(\overrightarrow{MB=}-k\overrightarrow{MH}\) , \(\overrightarrow{NC=}-k\overrightarrow{ND}\)
Suy ra \(\left(1+k\right)\overrightarrow{AM}=\overrightarrow{AB}+k\overrightarrow{AH}\)
và \(\left(1+k\right)\overrightarrow{MN}=\overrightarrow{BC}+k\overrightarrow{HD}\)
Suy ra :
\(\left(1+k\right)^2\overrightarrow{MN}.\overrightarrow{AM}=k\left(\overrightarrow{AB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)
\(=k\left(\overrightarrow{HB}.\overrightarrow{HD}+\overrightarrow{AH}.\overrightarrow{BC}\right)\)
\(=k\left(\overrightarrow{-AH^2}+\overrightarrow{AH}.\overrightarrow{AD}\right)\)
\(=k\overrightarrow{AH}.\overrightarrow{HD}=0\)
Suy ra điều phải chứng minh
- Tìm ảnh của điểm Q qua phép tịnh tiến theo \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)
Khi đó MN=QQ’ , suy ra MQ=NQ’ . Cho nên PN+MQ=PN+NQ’ ngắn nhất khi P,N,Q’ thẳng hàng .
- Các bước thực hiện :
+/ Tìm Q’ sao cho : \(\overrightarrow{CD}=\overrightarrow{U}=\overrightarrow{QQ'}\)
+/ Nối PQ’ cắt AD tại điểm N
+/ Kẻ NM //CD cắt BC tại M . Vậy tìm được M,N thỏa mãn yêu cầu bài toán .