Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\dfrac{3}{4}\overrightarrow{AC}-\dfrac{1}{2}\overrightarrow{AB}=\dfrac{3}{4}\left(\overrightarrow{AB}+\overrightarrow{AD}\right)-\dfrac{1}{2}\overrightarrow{AB}\)
\(=\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{4}\overrightarrow{AD}\)
\(\Rightarrow a+b=\dfrac{1}{2}+\dfrac{3}{4}=...\)
Đề là \(AB=4\) hay \(AD=4\) nhỉ? Sao lại có 2 kích thước của AD?
a)Ta có:
\(\overrightarrow{OA}+\overrightarrow{OM}+\overrightarrow{ON}=\overrightarrow{CO}+\dfrac{1}{2}\left(\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OC}+\overrightarrow{OD}\right)\)
\(=\overrightarrow{CO}+\dfrac{1}{2}.2\overrightarrow{OC}\)
\(=\overrightarrow{0}\)
\(\RightarrowĐPCM\)
b) Ta có:
\(\overrightarrow{AM}=\dfrac{1}{2}\left(\overrightarrow{AD}+2\overrightarrow{AB}\right)\)
\(\Rightarrow2\overrightarrow{AM}=\overrightarrow{AD}+2\overrightarrow{AB}\) (1)
Mà \(2\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{AC}\)(2)
Từ (1)(2) =>\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{AC}\)
\(\Rightarrow\overrightarrow{AC}+\overrightarrow{AB}=\overrightarrow{AB}+\overrightarrow{AC}\)
\(\RightarrowĐPCM\)
1) \(\overrightarrow{AM}=\overrightarrow{AD}+\overrightarrow{DM}\)
\(=\overrightarrow{AD}+\dfrac{2}{3}\overrightarrow{DC}\)
\(=\overrightarrow{AD}+\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AD}\right)\)
\(=\dfrac{2}{3}\overrightarrow{AC}+\dfrac{1}{3}\overrightarrow{AD}\) (đpcm)
2) \(AC=BD=\sqrt{AB^2+AD^2}=\sqrt{4^2+2^2}=2\sqrt{5}\)
\(\overrightarrow{AC}.\overrightarrow{AD}=\dfrac{AC^2+AD^2-CD^2}{2}\)
\(=\dfrac{20+4-16}{2}=4\)
3) Gọi O là tâm hình chữ nhật
\(\Rightarrow2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}=\overrightarrow{0}\)
Ta có:
\(2PA^2+PB^2+2PC^2+PD^2\)
\(=2\left(\overrightarrow{PO}+\overrightarrow{OA}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OB}\right)^2+2\left(\overrightarrow{PO}+\overrightarrow{OC}\right)^2+\left(\overrightarrow{PO}+\overrightarrow{OD}\right)^2\)
\(=6PO^2+2OA^2+OB^2+2OC^2+OD^2+2\overrightarrow{PO}\left(2\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}+\overrightarrow{OD}\right)\)
\(=\)\(6PO^2+2OA^2+OB^2+2OC^2+OD^2\)
\(=6PO^2+6OA^2\left[OB=OD=OA=OC\right]\)
\(=6PO^2+6\left(\sqrt{5}\right)^2\)
\(=6PO^2+30\ge30\)
Dấu "=" xảy ra \(\Leftrightarrow O\equiv P\)
\(\Rightarrow\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}\le\dfrac{1}{30}\)
\(Max\dfrac{1}{2PA^2+PB^2+2PC^2+PD^2}=\dfrac{1}{30}\Leftrightarrow P\equiv O\)
Chọn B