K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2019

cái hình thì mk gửi link trong ib nhé 

a) Gọi O là giao điểm của AC và BD 

\(\Delta OAB\) vuông tại O có \(OA^2+OB^2=AB^2=49\)

Lại có: \(\tan BAC=\tan OAB=\frac{OB}{OA}=\frac{3}{4}\)\(\Leftrightarrow\)\(\frac{OA^2}{16}=\frac{OB^2}{9}=\frac{OA^2+OB^2}{16+9}=\frac{49}{25}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{OA}{4}=\frac{7}{5}\\\frac{OB}{3}=\frac{7}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}OA=\frac{28}{5}\left(cm\right)\\OB=\frac{21}{5}\left(cm\right)\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}AC=2OA=\frac{56}{5}\left(cm\right)\\BD=2OB=\frac{42}{5}\left(cm\right)\end{cases}}\)

\(\Rightarrow\)\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.\frac{56}{5}.\frac{42}{5}=\frac{1176}{25}=47,04\left(cm^2\right)\)

b) Gọi E, F lần lược là giao điểm của BD với MN và PQ 

tam giác ABD có MQ // BD 

\(\Rightarrow\)\(\frac{MQ}{BD}=\frac{MA}{AB}\) ( hệ quả định lí Talet ) 

tam giác OAD có QF // OA 

\(\Rightarrow\)\(\frac{QF}{OA}=\frac{DQ}{AQ}=\frac{MB}{AB}\) ( hệ quả định lí Talet ) 

\(\Rightarrow\)\(\frac{MQ}{BD}+\frac{QF}{OA}=\frac{MA+MB}{AB}=1\)

\(\Rightarrow\)\(1\ge2\sqrt{\frac{MQ.QF}{BD.OA}}\)\(\Leftrightarrow\)\(MQ.QF\le\frac{1}{4}BD.OA\)

Tương tự, ta cũng có: \(NP.PF\le\frac{1}{4}BD.OC\)

\(\Rightarrow\)\(MQ.QF+NP.PF=S_{MEFQ}+S_{NEFP}=S_{MNPQ}\le\frac{1}{4}BD.AC=\frac{1}{2}S_{ABCD}=23,52\left(cm^2\right)\)

Dấu "=" xảy ra khi M, N, P, Q là trung điểm của AB, BC, CD, DA 

18 tháng 10 2015

Gọi hình chữ nhật là ABCD, nội tiếp đường tròn tâm O.

Vì tam giác ABC vuông tại B nên nội tiếp đường tròn đường kính AC, mà đường tròn đó chính là đường tròn tâm O ở trên

=> O là trung điểm AC.

Tương tự, O cũng là trung điểm BD.

b/ Chu vi lớn nhất.

Chu vi = 2(AB+BC) nên cần tìm giá trị AB+BC lớn nhất.

Mà ABC vuông tại B nên theo Pythagoras: \(AB^2+CB^2=AC^2=4R^2\)

Áp dụng bất đẳng thức \(\left(x-y\right)^2\ge0\Leftrightarrow\left(x+y\right)^2\le2\left(x^2+y^2\right)\Leftrightarrow x+y\le\sqrt{2\left(x^2+y^2\right)}\text{ }\left(x,y>0\right)\)

\(AB+BC\le\sqrt{2\left(AB^2+BC^2\right)}=\sqrt{8R^2}=2R\sqrt{2}=\text{không đổi.}\)

Dấu "=" xảy ra khi AB=BC <=> ABC vuông cân tại B <=> OB vuông góc AC <=> ABCD là hình vuông <=> ........ (bất cứ cái gí mình cần).

a/ Diện tích lớn nhất.

Tương tự như trên 

\(S_{ABCD}=AB.BC\le\frac{AB^2+BC^2}{2}=2R^2\)

Dấu "=" xra khi AB=BC <=>....Hình vuông

21 tháng 7 2017

Ta có bất đẳng thức Cauchy với 2 số a,b không âm :\(\frac{a+b}{2}\ge\sqrt{ab}\)

a)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->a+b=k không đổi

->Shcn=ab\(\le\frac{\left(a+b\right)^2}{4}\)=\(\frac{k^2}{4}\)

Dấu "=" xảy ra <=>a=b<=> hình vuông

b)Gọi độ dài 2 cạnh liên tiếp của hình chữ nhật là a,b->ab=k không đổi

Chu Vi HCN=2(a+b)\(\ge\)\(4\sqrt{ab}\)=4\(\sqrt{k}\)

Dấu "=" xảy ra <=> a=b <=>Hình vuông

Khi quay hình chữ nhật ABCD quanh đường AB thì được hình trụ có 

R=BC=a, h=AB=2a

\(S_{XQ}=2\cdot pi\cdot a\cdot2a=4\cdot pi\cdot a^2\)