K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2017

Đoạn thẳng f: Đoạn thẳng [D, C] Đoạn thẳng j: Đoạn thẳng [D, A] Đoạn thẳng k: Đoạn thẳng [C, B] Đoạn thẳng l: Đoạn thẳng [A, B] Đoạn thẳng p: Đoạn thẳng [M, N] Đoạn thẳng q: Đoạn thẳng [D, B] Đoạn thẳng s: Đoạn thẳng [P, C] Đoạn thẳng t: Đoạn thẳng [Q, M] Đoạn thẳng a: Đoạn thẳng [H, O] Đoạn thẳng b: Đoạn thẳng [Q, P] Đoạn thẳng c: Đoạn thẳng [N, H] Đoạn thẳng d: Đoạn thẳng [M, P] D = (-3.42, 1.62) D = (-3.42, 1.62) D = (-3.42, 1.62) C = (4.66, 1.66) C = (4.66, 1.66) C = (4.66, 1.66) Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm A: Điểm trên g Điểm B: Giao điểm đường của h, i Điểm B: Giao điểm đường của h, i Điểm B: Giao điểm đường của h, i Điểm M: Trung điểm của l Điểm M: Trung điểm của l Điểm M: Trung điểm của l Điểm N: Trung điểm của f Điểm N: Trung điểm của f Điểm N: Trung điểm của f Điểm P: Điểm trên m Điểm P: Điểm trên m Điểm P: Điểm trên m Điểm O: Giao điểm đường của p, q Điểm O: Giao điểm đường của p, q Điểm O: Giao điểm đường của p, q Điểm Q: Giao điểm đường của n, q Điểm Q: Giao điểm đường của n, q Điểm Q: Giao điểm đường của n, q Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t Điểm H: Giao điểm đường của r, t

a) Do M, N là trung điểm của AB và CD nên MB // DN và MB = CN. Ngoài ta \(MN\perp AB\)

Vậy thì \(\Delta MOB=\Delta NOD\left(g-c-g\right)\Rightarrow OM=ON\)

Lại có HO // AB; \(MN\perp AB\Rightarrow HO\perp MN\)

Xét tam giác HMN có HO là đường cao đồng thời trung tuyến nên nó là tam giác cân, hay HM = HN.

b) Xét tam giác QBP có ON//BP nên \(\frac{QO}{QB}=\frac{QN}{QP}\) (Định lý ta-let)

Xét tam giác MQB có OH//BM nên \(\frac{QO}{QB}=\frac{QH}{QM}\) (Định lý ta-let)

Tức là ta có \(\frac{QH}{QM}=\frac{QN}{QP}\)

Xét tam giác QMP có \(\frac{QH}{QM}=\frac{QN}{QP}\) nên theo định lý Ta let đảo HN // MP. 

Vậy thì \(\widehat{HNM}=\widehat{NMP}\) (so le trong)

Lại có do tam giác HMN cân tại H nên \(\widehat{HNM}=\widehat{HMN}\) . Từ đó ta có:  \(\widehat{HM}N=\widehat{NMP}\)

hay MN là tian phân giác của \(\widehat{QMP}.\)

21 tháng 9 2017

hình ở đâu thế?

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2                                                                                                                                             

20 tháng 3 2019

ai giúp mk vs

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.1) Tính so đo góc AMB2) Chứng minh EH song song với BC3) Chứng minh AFEK nội tiếp4) Chứng minh...
Đọc tiếp

Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.

1) Tính so đo góc AMB

2) Chứng minh EH song song với BC

3) Chứng minh AFEK nội tiếp

4) Chứng minh I là trung điểm của AE

5)AD cắt CE tại I. Chứng minh CI đi qua trung điểm của HJ

6)Vẽ đường kính CP, CB cắt AD tại O', MO' cắt AB tại N. Chứng minh P,N,D thẳng hàng

7)AD cắt CO tại S, BS cắt AC tại Q. Chứng minh QC.QM=QS.QB

8)Chứng minh PNCE là hình thoi và góc NPE = 45o, CN là phân giác của OCP

9)CD cắt AB tại L. Chứng minh LN.LO=LP.LA và NB.AL=NA.BL

10)CN cắt AD tại V. Chứng minh VL,DN,CB đồng quy

0
23 tháng 10 2019

a, Học sinh tự chứng minh

b, Chứng minh: A F M ^ = C A F ^ ( = A C F ^ ) => MF//AC

c, Chứng minh:  M F N ^ = M N F ^ => ∆MNF cân tại M => MN = MF

Mặt khác: OD = OF = R

Ta có MF là tiếp tuyến nên DOFM vuông => ĐPCM