Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: B
a, b đúng.
c sai vì Góc tạo bởi hai tia phân giác của hai góc kề bù là góc vuông không phải góc nhọn.
d sai vì Trong các đường xiên và đường vuông góc kẻ từ một điểm ở ngoài một đường thẳng đến dường thẳng đó, đường vuông góc là đường ngắn nhất không phải dài nhất.
Ta cần chứng minh \(\overrightarrow{BF}.\overrightarrow{FG}=0\)
Ta có \(\overrightarrow{BF}=\frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BE}\right)\)
\(\overrightarrow{FG}=\frac{1}{2}\left(\overrightarrow{FD}+\overrightarrow{FC}\right)=\frac{1}{2}\left(\overrightarrow{FA}+\overrightarrow{AD}+\overrightarrow{FE}+\overrightarrow{EC}\right)=\frac{1}{2}\left(\overrightarrow{AD}+\overrightarrow{EC}\right)\)
=> \(\overrightarrow{BF}.\overrightarrow{FG}=\frac{1}{4}\left(\overrightarrow{BA}+\overrightarrow{BE}\right)\left(\overrightarrow{AD}+\overrightarrow{EC}\right)=\frac{1}{4}\left(\overrightarrow{BA}.\overrightarrow{AD}+\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}+\overrightarrow{BE}.\overrightarrow{EC}\right)\)
\(=\frac{1}{4}\left(0+\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}+0\right)=\frac{1}{4}\left(\overrightarrow{BA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{AD}\right)\)
\(=\frac{1}{4}\left(\overrightarrow{EA}.\overrightarrow{EC}+\overrightarrow{BE}.\overrightarrow{BC}\right)\) (vì EA là hình chiếu của BA lên EC; AD song song và bằng BC)
\(=\frac{1}{4}\left(-BE^2+\overrightarrow{BE}.\overrightarrow{BC}\right)\) (tính chất đường cao tam giác vuông BAC)
\(=\frac{1}{4}\overrightarrow{BE}\left(-\overrightarrow{BE}+\overrightarrow{BC}\right)=\frac{1}{4}\overrightarrow{BE}\left(\overrightarrow{EB}+\overrightarrow{BC}\right)=\frac{1}{4}\overrightarrow{BE}.\overrightarrow{EC}=0\)
(ĐFCM)
Chọn B.
Xét đáp án B
Đặt và BA = a; BC = b và BK = c.
Do M là trung điểm của AK nên ,
Do đó
Vì và nên
Suy ra MN và BM vuông góc với nhau
Do đó góc BMN bằng 900.