K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

Phương pháp tọa độ trong mặt phẳng

8 tháng 5 2016

\(d\left(I;AB\right)=\frac{\left|\frac{1}{2}+2\right|}{\sqrt{1^2+\left(-2\right)^2}}=\frac{\sqrt{5}}{2}\Rightarrow AD=2d\left(I;AB\right)=\sqrt{5}\)và \(AB=2AD=2\sqrt{5}\)

Do đó \(IA=IB=IC=ID=\frac{1}{2}AC=\frac{5}{2}\)

Gọi \(\omega\) là đường tròn tâm I, bán kính \(R=IA\) thế thì  \(\omega\)  có phương trình \(\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\)

Do vậy tọa độ của A, B là nghiệm của hệ :

\(\begin{cases}\left(x-\frac{1}{2}\right)^2+y^2=\frac{25}{4}\\x-2y+2=0\end{cases}\)

Giải hệ thu được \(A\left(-2;0\right);B\left(2;2\right)\) (do A có hoành độ âm), từ đó , do I là trung điểm của AC và BD suy ra \(C\left(3;0\right);D\left(-1;-2\right)\)

5 tháng 6 2016

C ƠI HÌNH NHƯ BÀI 1 SAI ĐỀ BÀI R

NV
23 tháng 3 2022

Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)

\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)

\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)

Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)

\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)

\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)

\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)

\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B

\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C

NV
7 tháng 3 2023

Đường thẳng AB nhận (1;-1) là 1 vtpt

Do ABCD là hình chữ nhật \(\Rightarrow BC\perp AB\) và \(CD||AB\)

\(\Rightarrow\) Đường thẳng BC nhận (1;1) là 1 vtpt và đường thẳng CD nhận (1;-1) là 1 vtpt

Phương trình BC:

\(1\left(x-0\right)+1\left(y+1\right)=0\Leftrightarrow x+y+1=0\)

Phương trình CD:

\(1\left(x-0\right)-1\left(y+1\right)=0\Leftrightarrow x-y-1=0\)

\(BC=AD=d\left(C;AB\right)=\dfrac{\left|1.0-1.\left(-1\right)+1\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)

\(\Rightarrow AB=CD=2\sqrt{2}\)

Do AD song song BC nên pt có dạng: \(x+y+c=0\)

Mặt khác \(CD=d\left(C;AD\right)=\dfrac{\left|0.1+1.\left(-1\right)+c\right|}{\sqrt{1^2+1^2}}=2\sqrt{2}\)

\(\Rightarrow\left|c-1\right|=4\Leftrightarrow\left[{}\begin{matrix}c=5\\c=-3\end{matrix}\right.\)

Có 2 đường thẳng AD thỏa mãn: \(\left[{}\begin{matrix}x+y+5=0\\x+y-3=0\end{matrix}\right.\)

7 tháng 3 2023

Cho em hỏi CD//AB đáng lã là vtcp tại sao lại là vtpt vậy